
Introduction to Design and Analysis of Stream
Ciphers

Willi Meier

Albena, June 30 - July 5, 2013

1 / 63

Overview

I Stream Ciphers: A short Introduction
I Cryptanalysis principles
I Time/Memory/Data tradeoffs
I Berlekamp-Massey algorithm
I LFSR-based stream ciphers
I Combiners with Memory
I Correlation attacks
I Linear (distinguishing) attacks
I Algebraic attacks
I The European NoE eSTREAM Project
I NLFSR-based stream ciphers: Trivium and Grain

2 / 63

Introduction

Why stream ciphers?

Applied in:

Environments with high throughput requirements. Stream
ciphers can be up to 5 times faster than, e.g., AES.

Devices with restricted resources, e.g., in RFIDs (lightweight
crypto).

3 / 63

Introduction

Stream Cipher:
Encrypts sequence of plaintext symbols, e.g., from a binary
alphabet {0,1}, or from 32-bit words.

Synchronous stream cipher:
The output of a pseudorandom generator, the keystream, is
used together with the plaintext to produce the ciphertext.

Additive stream cipher:
Ciphertext symbols ci obtained from plaintext symbols mi and
keystream symbols bi by xor addition.

4 / 63

Introduction

A synchronous stream cipher:

Takes as input a κ-bit secret key k and a n-bit public initial
vector v (or IV).

Initialization mixes input to generate a random looking initial
state.

Thereafter, keystream is output and state is continuously
updated.

5 / 63

Introduction

Formally:

Initialization function F : {0,1}κ × {0,1}n 7→ {0,1}m.

State update function G : {0,1}m 7→ {0,1}m

Output function H : {0,1}m 7→ {0,1}.

st : state at time instant t .

st+1 = G(st , k), zt = H(st , k).

6 / 63

Introduction

As in every symmetric crypto system, sender and receiver have
to be in possession of the key k (e.g. of 128 bits).

Message split into small packets. Each of them encrypted
using a fresh IV as input.

7 / 63

Introduction

Prototype stream cipher: One-Time-Pad (F. Miller 1882, G.
Vernam, 1917)

Keystream: A random binary string

OTP has perfect security (Shannon, 1945).

In a deterministic stream cipher, random string of OTP replaced
by pseudo random string.

Only secret key k needs to be securely transmitted.

Provable security lost.

8 / 63

Introduction

Examples of stream ciphers

I RC4, used, e.g., in eBanking
I E0, used in the Bluetooth protocol
I A5/1, used in GSM cellphones

A variety of cryptanalytic results known on these ciphers.

9 / 63

Introduction
Stream ciphers can have very simple structure, e.g., RC4 only
needs a few lines for its description:

`-byte key k is expanded into N-byte array K [0...(N − 1)],
N = 256:

K [y] = k [y mod `] for any y , 0 ≤ y ≤ N − 1.

Algorithm 1 KSA
for i = 0 to N − 1 in steps of 1 do

S[i] = i
end for
j = 0
for i = 0 to N − 1 in steps of 1 do

j = (j + S[i] + K [i])
Swap(S[i],S[j])

end for

10 / 63

Introduction

Algorithm 2 PRGA
i = j = 0
Key Stream Generation Loop:
i = i + 1
j = j + S[i]
Swap(S[i],S[j])
t = S[i] + S[j]
return z = S[t]

11 / 63

Introduction

State-of-the-art stream ciphers include:

I SNOW 2.0, software oriented, ISO/IEC standard
I SNOW 3G, 3GPP in UEA2 and UIA2
I ZUC (core of new Long Term Evolution algorithms)
I eSTREAM finalists, e.g., Salsa20, Rabbit for software, and

Grain and Trivium for hardware implementation.

12 / 63

Introduction

Stream cipher modes of operation of block ciphers (e.g., Triple
DES or AES):

I Cipher feedback
I Output feedback
I Counter mode

13 / 63

Introduction

A dedicated stream cipher with provable security:

QUAD (Berbain-Gilbert-Patarin, 2006)

Based on difficulty of solving systems of multivariate quadratic
equations mod 2.

14 / 63

Introduction

Difference between block ciphers and synchronous stream
ciphers?

Block cipher needs several rounds until it outputs a block.
Resulting output dependent on plaintext.

Dedicated stream cipher produces output after each update
(round). Resulting output independent on plaintext (but on
present state).

15 / 63

Cryptanalysis principles

In cryptanalysis of stream ciphers: Assume either that

I Some part of plaintext is known (known-plaintext attack), or
I Plaintext has redundancy (e.g., has ASCII format).

For additive stream ciphers, a known part of plaintext is
equivalent to a known part of keystream.

16 / 63

Cryptanalysis principles

Distinction between passive and active attacks.

In passive attacks:

Exploit either output mode or initialization (resynchronization)
mode.

Key recovery: Attempt to recover secret key k out of observed
key stream.
Distinguishing attack: Try to distinguish observed key stream
from being a purely random sequence. Distinguishing attacks
may sometimes be turned into key recovery attacks.

Side-channel attack: Measures radiation or power consumption
during execution of encryption.

17 / 63

Cryptanalysis principles

In active attacks:

- Adversary inserts, deletes or replays ciphertext digits.
Causes loss of synchronization: Data intgrity check and
data origin authentication necessary.

- Fault attack: Adversary actively induces faults in state
(e.g., by ionizing radiation).

18 / 63

Berlekamp-Massey algorithm

Efficient method to deliver shortest LFSR, together with initial
state that can generate a given sequence.

LFSR of length L:

State vector (xL, ..., x1). In one step, each bit is shifted one
position to the right, except the rightmost bit x1 which is output.

On the left, a new bit is shifted in, by a linear recursion

xj = (c1xj−1 + c2xj−2 + ...+ cLxj−L) mod 2,

for j > L.

19 / 63

Berlekamp-Massey algorithm

Linear complexity of a binary sequence:

Length of shortest LFSR that can produce the given sequence.

Complexity of Berlekamp-Massey algorithm: Quadratic in
length of LFSR.

Consequence: Linear complexity and period of stream cipher
need to be large.

20 / 63

Time/Memory/Data tradeoffs

General type of attack. Introduced for block ciphers by Hellman
(1980).

For stream ciphers introduced by Babbage (1995), Golić
(1997). General treatment by Biryukov-Shamir (2000).

N: size of search space
M: amount of random access memory
T : time required by realtime phase of attack
D: amount of realtime data available to attacker

21 / 63

Time/Memory/Data tradeoffs

Statement of basic version of attack: TM = N.

Example: T = M; Hence T = M = N1/2.

Attack associates to each of N possible states of generator a
string of the first log(N) bits of output produced from that state.

22 / 63

Time/Memory/Data tradeoffs

Mapping f (x) = y from states x to output prefixes y :

Easy to evaluate but hard to invert.

Preprocessing phase: Pick M random states xi , compute yi ,
and store all (xi , yi) in a sorted table.

Realtime phase: Given D + log(N)− 1 output bits, derive all
possible D windows y1, ..., yD of log(N) consecutive bits (with
overlaps). Look up each yi in table. If one yi is found, can
determine corresponding xi .

23 / 63

Time/Memory/Data tradeoffs

Threshold of success: Birthday paradox.

Two random subsets of space with N points each are likely to
intersect when product of their sizes exceeds N.

Hence DM = N, where preprocessing time P = M, attack time
T = D, i.e., TM = N.

Consequence: Size N of state space of stream cipher should
be at least twice the size of secret key.

24 / 63

LFSR-based stream ciphers

LFSRs easy to implement in hardware.

Depending on linear recursion, LFSRs have desirable
properties:

I Output sequence has large period (e.g. maximum period
2L − 1).

I Good statistical properties.
I Easy to analyse algebraically.

25 / 63

LFSR-based stream ciphers

Drawback for cryptography: LFSRs easy to predict.

Solve a system of linear equations for unkonwn state bits and
recursion coefficients, or use Berlekamp-Massey algorithm.

Destroy linearity by

I Nonlinear filter/combining functions on outputs of one or
several LFSRs.

I Use of output of one/several LFSRs to control the clock of
one/more other LFSRs.

LFSR-based stream ciphers can have some provable
properties, like large period or linear complexity.

26 / 63

LFSR-based stream ciphers

Nonlinear filter generator:

Generate key stream bits b0,b1,b2, ..., as some nonlinear
function f of the stages of a single LFSR.

27 / 63

LFSR-based stream ciphers

Many (classical) stream ciphers are LFSR-driven, e.g.,
I A5/1
I Shrinking and self-shrinking generator

28 / 63

Combiners with Memory

A (k ,m)-combiner with k inputs and m memory bits is a finite
state machine (FSM), defined by an output function

f : {0,1}m × {0,1}k → {0,1}

and a memory update function

ϕ : {0,1}m × {0,1}k → {0,1}m.

29 / 63

For given stream of inputs (X1,X2, ...), Xi ∈ {0,1}k , and initial
assignment Q1 in {0,1}m to memory bits, the output bit stream
is defined as:

zt = f (Qt ,Xt),

and

Qt+1 = ϕ(Qt ,Xt),

all t > 0.

Often, driving devices for generating input streams are LFSRs.
Initial states determined by the secret key.

30 / 63

Example: Summation generator

Let k = 2 inputs. Write Xt as Xt = (at ,bt). Number of memory
bits: m = 1, given by carry of integer addition in binary
representation.

Functions f and ϕ defined as

zt = f (Qt ,at ,bt) = at ⊕ bt ⊕Qt

and
Qt+1 = ϕ(Qt ,at ,bt) = atbt ⊕ atQt ⊕ btQt .

Important stream ciphers using a combiner with memory: E0,
SNOW 2.0, SOSEMANUK.

31 / 63

Combiners with Memory

SNOW 2.0 (Ekdahl-Johansson, 2002)

Key size 128 bits.

Overall structure: Word-oriented filter generator. At each cycle
a 32-bit word is output.

A length 16 LFSR over the finite field GF (232) feeds a finite
state machine.

FSM represents nonlinear part and consists of two 32-bit
registers. m = 64 bit memory.

Nonlinearity achieved through integer addition as well as 32-bit
permutation using S-box and MixColumn of AES.

32 / 63

Correlation Attacks

Correlation attack illustrated by Combination Generator

The outputs am of s LFSRs are used as input of a Boolean
function f to produce key stream,

f (a1m, ...,asm) = bm.

Correlation: Prob(bm = aim) = p, p 6= 0.5.

Example: s = 3.

f (x1, x2, x3) = x1x2 + x1x3 + x2x3

p = 0.75.

33 / 63

Correlation Attacks

Statistical model: Assume a binary asymmetric source zm with
Prob(zm = 0) = p > 0.5. Let

bm = am + zm mod 2.

Decoding problem: Given N digits of b (and the structure of the
LFSR, of length L).

Find correct output sequence a of the LFSR.

34 / 63

Correlation Attacks

Known solution: By exhaustive search over all initial states of
LFSR find a such that

T = #{j |bj = aj ,0 ≤ j ≤ N}

is maximum. Complexity O(2L).

Feasible for L up to about 50.

Search can be accelerated by Fast Correlation Attacks.

35 / 63

Correlation Attacks

Fast correlation attack: Significantly faster than exhaustive
search over all initial states of target LFSR. Based on using

parity check equations created from feedback polynomial of
LFSR (R. Gallager, Low-density parity-check codes 1963, MS
1988, CJM 2003,...).

36 / 63

Correlation Attacks

Correlation attacks can be successful if cipher allows for good
approximations of the output function by linear functions in
state bits of LFSRs involved (Linear attack).

In design of stream ciphers, Boolean functions f should

I be correlation immune
I have large Hamming distance to affine functions
I have large algebraic degree (to counter

Berlekamp-Massey synthesis)

37 / 63

Correlation attacks
Correlation immunity:

Let X1,X2, ...,Xn be independent binary variables, which are
balanced (i.e. each takes values 0 and 1 with probability 1/2.

A Boolean function f (x1, x2, ..., xn) is m-th order correlation
immune if for each subset of m random variables
Xi1,,Xi2, ...,Xim the random variable Z = f (X1,X2, ..., xn) is
statistically independent of the random vector (Xi1,Xi2, ...,Xim).

Tradeoff between order m of correlation immunity and degree of
Boolean function: For balanced f , degree of f is at most
n −m − 1 for 1 ≤ m ≤ n − 2. Tradeoff can be avoided by using
memory.

Example: The function f in the summation generator with k = 2
inputs is second order correlation immune,

f (Qt ,at ,bt) = at ⊕ bt ⊕Qt .

38 / 63

Linear Attacks

Linear attacks seek for correlations between

1. linear functions of selected keystream bits, or
2. between linear functions of selected keystream bits and

linear functions in state bits.

Correlations can be exploited either for a distinguisher or even
for key recovery in second case, if there are many more linear
relations than unknowns.

39 / 63

Linear Attacks

Correlations in combiner with M-bit memory:

Consider block of m consecutive outputs
Zt = (zt , zt−1, ..., zt−m+1) as a function of corresponding block
of input vectors Xt = (Xt ,Xt−1, ...,Xt−m+1) at time t and the
preceeding M-bit memory vector Ct−m+1 at time t −m + 1.
Assume Xt and Ct−m+1 balanced and mutually independent.

Then, if m ≥ M, there must exist linear correlations between
the output and the input bits (Golić), but they may also exist if
m < M.

Linear attacks have been devised against various stream
ciphers, including SNOW 1.0 (Coppersmith-Halevi-Jutla, 2002)
and SNOW 2.0 (Watanabe-Biryukov-De Cannière,
Nyberg-Wallén,...).

40 / 63

Algebraic attacks
Algebraic attacks: Solve systems of algebraic equations (CM,
2003).

Type of equations: System of multivariate polynomial equations
over finite field, e.g. GF (2).

x1 + x0x1 + x0x2 + · · · = 1
x1x2 + x0x3 + x7 + · · · = 0
... + ... + ... + · · · = ...

Breaking a good cipher should require:

” ... as much work as solving a system of simultaneous
equations in a large number of unknowns of a complex type ”
[Shannon, 1949, Communication theory of secrecy systems].

Common experience: Large systems of equations become
intractable soon with increasing number of unknowns (is
NP-hard problem).

41 / 63

Algebraic Attacks

However:

Systems that are

I Overdefined, i.e., have more equations than unknowns, or
I Sparse

are easier to solve than random systems, e.g., by

I Linearization
I Gröbner bases
I SAT-solvers

42 / 63

Algebraic Attacks

Direct algebraic approach:

Derive equations in key/state bits

f (k0, k1, ..., kn−1) = b0
f (L(k0, k1, ..., kn−1)) = b1
f (L2(k0, k1, ..., kn−1)) = b2
...... = ...

L(): Linear recursion.

43 / 63

Algebraic Attacks

Solve this system of equations.

In context of stream cipher analysis: System overdefined
depending on amount of known key stream.

Linearization:

Assumption: f is of low algebraic degree d . Then the key is
found given about D =

∑d
i=1
(n

d

)
key stream bits and within Dω

computations, where ω is the exponent of Gaussian reduction (
ω < 3).

Linearization: One new variable for each monomial. Solve
linear system.

44 / 63

Algebraic Attacks

Scenarios for high-degree f :

Suppose f = g · h. Assume furthermore

I f · g = 0, where the degree of g is low, or
I f · g = h, where both, degrees of g and h are low.

If output bit bi = 1, the first case gives g(s) = 0 for state s.

If output bit bi = 0, get equation h(s) = 0.

45 / 63

Algebraic attacks

Idea of algebraic attack:

Instead of f (s) = bt with s = Lt(k) and secret key k ,

solve the equations

f (s) · g(s) = bt · g(s)

with well-chosen function g.

Question: Do favorable functions g of low degree exist?

46 / 63

Algebraic Attacks

Under some condition, such functions g do always exist.

Theorem (Low-degree relations)
Let f be any Boolean function in k variables. Then there is a
nonzero Boolean function g of degree at most k/2 such that
f (x) · g(x) is of degree at most k/2.

(Take ceilings of k/2 if k is odd.)

This result has been motivated by cryptanalysis of multivariate
digital signature schemes as well as by cryptanalysis of AES
block cipher.

47 / 63

Algebraic Attacks

Consequence:

Algebraic attack breaks any stream cipher with linear feedback
and Boolean output function with a small number k of state bits
as input, in polynomial complexity, if k is considered as a small
constant.

Complexity only approx. square root of known attack.

48 / 63

Algebraic Attacks

Attack works for more general LFSR-based stream ciphers,
e.g., for combiners with memory.

Fast algebraic attack (Courtois 2003).

No multivariate equations of low degree should exist that relate
state bits and one or more output bits.

Algebraic attack on filter generator by Helleseth-Rønjom (2007):

Needs O(D) keystream bits with complexity O(D), after
precomputation with complexity O(D(log2 D)3).

Does not take advantage of low-degree polynomial multiples of
filter function.

49 / 63

The eSTREAM Project

eSTREAM: Project to identify ”new stream ciphers that might
become suitable for widespread adoption”.

Organized by the EU NoE network ECRYPT.

Set up as a result of failure of predecessor project NESSIE.

Started in November 2004 and ended in May 2008.

Project goal: Find algorithms suitable for different profiles.

No standardization (as opposed to AES or SHA-3
competitions).

50 / 63

The eSTREAM Project

Profile 1: Stream ciphers for software applications where high
throughput is required (with higher performance than AES in
counter mode).

Profile 2: Stream ciphers for hardware applications with
restricted resources, e.g., limited storage, gate count, or power
consumption.

Both profiles contain a subcategory with ciphers that also
provide authentication in addition to encryption.

In reaction to Call for Primitives: 34 proposals were submitted!

51 / 63

The eSTREAM Project

Four finalists in each category:

Profile 1 (Software):
HC-128
Rabbit
Salsa20/12
SOSEMANUK

Profile 2: (Hardware):
Grain v1
MICKEY 2.0
Trivium
(F-FCSR)

http://www.ecrypt.eu.org/stream/

52 / 63

NLFSR-based stream ciphers: Trivium and Grain

Nonlinear feedback shift register (NLFSRs): Building blocks of
several lightweight primitives.

Facilitate efficient hardware.

Classical LFSR-based stream ciphers: Update function is
implemented by one or several LFSRs.

Burden to create nonlinearity of construction carried entirely by
output function.

53 / 63

NLFSR-based stream ciphers: Trivium and Grain

NLFSR-based constructions: Nonlinearity may be shared
between update and output function.

Can prevent algebraic attacks.

NLFSRs much less understood than LFSRs (e.g., period?)

Only few tools available to assess security of NLFSR-based
cryptosystems.

54 / 63

NLFSR-based stream ciphers: Trivium and Grain

Trivium is eSTREAM finalist, designed by De Cannière and
Preneel in 2005.

I 80-bit secret key and 80-bit initial value IV (public)
I 3 quadratic NLFSRs, of different lenghts
I 1152 initialization rounds before output is produced
I Increased efficiency by factor up to 64: Implement Boolean

functions in parallel

55 / 63

NLFSR-based stream ciphers: Trivium and Grain

State size is 288 bit.

Update function nonlinear, to counter algebraic attacks.

Output function is linear.

At each update, one output bit is produced.

56 / 63

NLFSR-based stream ciphers: Trivium and Grain
Initialization of Trivium

(s1, s2, ..., s93)← (k0, ..., k79,0,0, ..,)
(s94, s95, ..., s177)← (x0, x1, ..., x79,0., , , ,0)
(s178, s179, ..., s288)← (0,0, ...,0,1,1,1)
for i = 1 to 4 · 288 do

t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, ..., s93)← (t3, s1, ..., s92)

(s94, s95, ..., s177)← (t1, s94, ..., s176)

(s178, ..., s288)← (t2, s178, ..., s287)

end for
57 / 63

NLFSR-based stream ciphers: Trivium and Grain

Output generation of Trivium

for i = 1 to ` do
t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3
t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, ..., s93)← (t3, s1, ..., s92)

(s94, s95, ..., s177)← (t1, s94, ..., s176)

(s178, ..., s288)← (t2, s178, ..., s287)

end for

58 / 63

NLFSR-based stream ciphers: Trivium and Grain

Remarks

If in iterations, state variables s1, ..., s288 are expressed by
k1, ..., k80 and v1, ..., v80, degree of polynomials increases only
slowly.

System of equations in state variables for given output
sequence z1, ..., z` is of low degree for ` = 288, and has only
few nonlinear monomials.

Best attack on full Trivium for given output sequence by
Maximov-Biryukov.

Involves guessing of certain state bits and products of state bits
that reduce nonlinear system of equations to linear one.

Complexity: c · 284 for some constant c.

59 / 63

NLFSR-based stream ciphers: Trivium and Grain

Initialization of Grain-128a (follow up of Grain-128)

NLFSR LFSR

g f

h

f : Primitive feedback polynomial of the LFSR.

g: Nonlinear feedback polynomial of the NLFSR of order 4.

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8.

60 / 63

NLFSR-based stream ciphers: Trivium and Grain

State size: 256 bit.

Key size: 128 bit. Loaded in NLFSR.

IV size: 96 bit. Loaded in LFSR.

Remaining 32 bits fixed to 1, except last bit, which is set to 0.

Grain-128a allows for optional authentication.

Grain-128a is update of Grain-128, which has been
cryptanalyzed with complexity lower than 2128 operations.

Authentication based on additional LFSR using method by H.
Krawczyk.

61 / 63

NLFSR-based stream ciphers: Trivium and Grain
Output mode of Grain-128a

NLFSR LFSR

g

24 5 6

f

2 7
h

7

In mode without authentication, all output bits used directly as
keystream.

Increase of efficiency by factor up to 32 using parallel
implementation of Boolean functions.

62 / 63

Concluding remarks

I Ratio between known and publicly known design and
analysis?

I Initialization mechanism ad hoc: Better designs?
I Stream ciphers with provable properties (correlations,

linear approximations)
I CAESAR competition for Authenticated Encryption

63 / 63

