
Embedded Security for Car Telematics
and Infotainment

Anthony Coyette

Thesis voorgedragen tot het behalen
van de graad van Master of Science

in de ingenieurswetenschappen:
elektrotechniek, optie Geïntegreerde

elektronica

Promotor:
Prof. Dr. Ir. I. Verbauwhede

Assessoren:
Prof. Dr. Ir. B. Preneel

Prof. Dr. Ir. F.-X. Standaert

Begeleiders:
Dr. Ir. B. Gierlichs

Ir. J. Balasch

Academiejaar 2011 – 2012

c© Copyright KU Leuven

Without written permission of the thesis supervisor and the author it is forbidden
to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publication should
be addressed to ESAT, Kasteelpark Arenberg 10 postbus 2440, B-3001 Heverlee,
+32-16-321130 or by email info@esat.kuleuven.be.

A written permission of the thesis supervisor is also required to use the methods,
products, schematics and programs described in this work for industrial or commercial
use, and for submitting this publication in scientific contests.

Zonder voorafgaande schriftelijke toestemming van zowel de promotor als de au-
teur is overnemen, kopiëren, gebruiken of realiseren van deze uitgave of gedeelten
ervan verboden. Voor aanvragen tot of informatie i.v.m. het overnemen en/of
gebruik en/of realisatie van gedeelten uit deze publicatie, wend u tot ESAT, Kas-
teelpark Arenberg 10 postbus 2440, B-3001 Heverlee, +32-16-321130 of via e-mail
info@esat.kuleuven.be.

Voorafgaande schriftelijke toestemming van de promotor is eveneens vereist voor het
aanwenden van de in deze masterproef beschreven (originele) methoden, producten,
schakelingen en programma’s voor industrieel of commercieel nut en voor de inzending
van deze publicatie ter deelname aan wetenschappelijke prijzen of wedstrijden.

Preface

I would like to thank my assistants Benedikt and Josep for their regular support
and advice. Without them I would still be thinking the world is secure.

Another team who deserves my thanks is my family. I think about my Dad and
his "explanations", my mother and her boundless care. I should maybe also give a
word about my brother and my sister, but I won’t.

Finally, I would like to thank Caroline who, by many ways, brought me here.
I love you.

Anthony Coyette

i

Contents

Preface i
Abstract iv
List of Figures and Tables v
List of Abbreviations and Symbols vii
1 Introduction 1

1.1 Motivation . 1
1.2 Contribution . 1
1.3 Structure . 2

2 Elliptic Curve Cryptography 3
2.1 Elliptic Curves . 3
2.2 Projective coordinates . 10
2.3 Edwards Curves . 10
2.4 Protocol . 11
2.5 Advantages of ECC . 12
2.6 Physical Attacks . 13
2.7 Conclusion . 15

3 Design Choices 17
3.1 Arithmetic Field . 17
3.2 Elliptic Curve . 18
3.3 Processor . 18
3.4 Conclusion . 20

4 Software Implementation 21
4.1 Structure and data . 21
4.2 Arithmetic Layer . 24
4.3 Elliptic-Curve Layer . 27
4.4 Protocol Layer . 27
4.5 Results of the implementation . 27
4.6 Conclusion . 27

5 Hardware Acceleration 29
5.1 Overview . 29
5.2 Bottleneck Analysis . 30
5.3 Interface of communication . 31

ii

Contents

5.4 Basic blocks: 8x8, 16x16, 32x32 . 31
5.5 192-bits modular multiplication . 32
5.6 ASM optimization . 35
5.7 Testing . 37
5.8 Conclusion . 37

6 Security Assessment 39
6.1 Experimental setup . 39
6.2 Point of attack . 40
6.3 Simple Power Analysis . 40
6.4 Differential Power Analysis . 44
6.5 Conclusion . 45

7 Comparison 47
7.1 Execution time . 47
7.2 Area utilization . 48
7.3 Energy consumption . 49
7.4 Security . 50

8 Conclusion 51
A Elliptic curves algorithms 55

A.1 Simplified Weierstrass in affine coordinates 55
A.2 Unified operation for Edwards Curves 56

B Program timing measurement 57
C VHDL Code of the 8x8 module 61
D Magma Scripts 63

D.1 Points on Edwards Curves . 63
D.2 Scalar multiplications . 63

E Data of Energy Consumption 67
F C implementation 69
Bibliography 71

iii

Abstract

Elliptic Curve Cryptography appeared in 1985 and since became an increasingly
important crypto-system in public-key cryptography. Numerous articles have come
to improve the field. One of these milestones is Edwards Curves which appeared in
2007 and proposed advantageous properties against SPA attacks.

This thesis proposes the design, implementation and comparison of several small
co-processors in hardware acceleration work flow. We start from scratch the software
implementation of a scalar multiplication of Edwards Curves defined over FP192 in
projective coordinates. In a first phase, 8-bit, 16-bit, 32-bit multipliers interfaced on
the parallel port of a 8051 are successively developed. Then, the system is improved
again by the implementation of a memory mapped 192-bit broadcast multiplier
including a modular reduction. These five hardware configurations combined to an
assembly optimization finally furnish six versions which are compared on four axes :
time, energy consumption, area and security.

On the one hand the side-channel attack still exposes a SPA-weakness in the
implementation of all the version. On the other hand, measures show the expected
results that the 192-bit multiplier provides a faster and lower power system at the
expense of multiplying the silicon area by three.

Key words : Edwards Curves, Prime Field, Co-Design, Security.

iv

List of Figures and Tables

List of Figures

2.1 y2 = x3 − x. 4
2.2 y2 = x3 − x+ 1. 4
2.3 Point Addition. 5
2.4 Point Doubling. 6
2.5 Schnorr Protocol for ECC. 11
2.6 Setup for Power Analysis. 14

3.1 8051 Architecture. 20

4.1 Layered Software Implementation. 22

5.1 Parallel communication interface. 32
5.2 Memory Mapped Interface. 33
5.3 Horner’s Rule-Based Architecture. Source :[3]. 35
5.4 Schematics of the 192-bit Co-Processor. 36

6.1 One Point Addition. 41
6.2 Invariant execution. 42
6.3 Unequal intervals. 42
6.4 Graphical Representation of the Software. 43
6.5 Effect of NOP’s. 43
6.6 Visually Equal Intervals. 44
6.7 Up: Power traces of keys 0x5 and 0x6.

Down: Difference of the two traces. 45

List of Tables

2.1 NIST recommended key sizes (in bits). 12
2.2 Classification of Physical Attacks : Examples. 13

3.1 Comparison of 8-bits processor. 19

5.1 Profiling of the C code. 30
5.2 Profiling of the Point Addition. 36

v

List of Figures and Tables

5.3 Profiling of the Point Addition with the ASM optimization. 36

7.1 Speed of each version. 47
7.2 Resources Utilization. 49
7.3 Figures for a Scalar Multiplication. 50

E.1 Figures of Energy Consumption . 68

vi

List of Abbreviations and
Symbols

Abbreviations
AL Artihmetic Layer
DPA Differential Power Analysis
ECC Elliptic Curve Cryptography
EL Elliptic Layer
FSM Finite State Machine
SCA Side-Channel Attack
SPA Simple Power Analysis

Symbols

E Elliptic Curve
FP192 Prime field with NIST-P192 as prime number
K Field

vii

Chapter 1

Introduction

1.1 Motivation

In the automotive world, manufacturers provide their consumers with the newest
technology: GPS, DVD player,etc. With that technology emergence inside the car,
the classic car-radio theft became a more lucrative activity. Such that manufacturers
have now to defend their costumers against these thefts. In that area, cryptography
has a role to play. Instead of a mechanical protection, a crypto-system scheme can
verify the matching between an entertainment unit and the car when this one tries
to connect itself on the CAN bus. This would prevent the use of a device out of an
authorized car and make the theft device useless.

Cryptography proposes more than one solution to this task. A public-key au-
thentication system based on Elliptic Curve Cryptography is one of the possibilities.
The idea is to force the device to follow a protocol to prove its identity on its power
on. During the design of such a crypto-system, the manufacturer has to face a lot of
choices. First, concerning the mathematical security, several types of elliptic curves
exist and are defined over different finite fields with different key sizes. Then, during
the implementation, the manufacturer has to face more options. While software
implementations are cheap and flexible but slow, specific ASICs are fast, but fixed
and expensive. The co-design proposes an hardware/software trade-off and appears
like a good opportunity but increases the design parameters again.

Since so many options are offered, we think that a comparative study would help
to enlighten those choices. Of course, the field is too vast to be entirely covered. We
propose then to partially cover the co-design trade-off in a fixed context.

1.2 Contribution

In this work, we started from scratch the software implementation of a scalar
multiplication on Edwards curves in projective coordinates. We made that implemen-
tation run on a 8051 processor synthesized on a Virtex 2 FPGA. On the basis of that
pure software implementation, we did a analysis in order to locate the bottleneck.
This analysis made us implement several hardware multipliers of different sizes. We

1

1. Introduction

interfaced them all with the 8051 to end up with 5 different co-designs. We analyzed
then the performances of the six versions according to four parameters: time, energy
consumption, area and security.

1.3 Structure
This thesis is structured around eight chapters. In order to familiarize the reader

with the field of Elliptic Curve Cryptography and their implementation, Chapter 2
overviews the theoretical concepts, the specificities of their implementation and the
security issues. Chapter 3 lays the basis of our implementation, the main choices that
define the design of our work. Then, the software implementation is described in
Chapter 4. Chapter 5 explains the co-design work flow applied to the software version
in order to improve the performances. On the basis of the system implemented,
Chapter 6 covers the security analysis that we made. And finally, Chapter 7 handles
the comparison of the 6 versions from the four points of view previously stated: time,
area, consumption and security. In Chapter 8, we conclude and give perspectives for
a future work.

2

Chapter 2

Elliptic Curve Cryptography

Elliptic curves are mathematical objects that have been studied in mathematics
for a long time, some roots of this study takes place BC with Diophantus[30]. In
this work, a more specific look will be taken on elliptic curves when they are used as
the basis of a crypto-system. The idea of using these mathematical constructions in
cryptography appeared around 1985 and is attributed to Miller and Kolbitz with
their respective papers [17] [22].

In this chapter, a basic introduction presents the elliptic curves and the operations
that are defined on them. Afterwards, prime fields are introduced to explain how
elliptic curves are used in cryptography. Then, algorithms are given to illustrate
different coordinate systems, and types of curves. Next, we outline the main advan-
tages of Elliptic Curve Cryptography. Finally, the last section will cover the attacks
that threaten implementations.

2.1 Elliptic Curves

As stated in Hankerson’s book [10], an Elliptic Curve E over a field K is defined
by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K. 1 This equation – also called the Weierstrass form –
represents a general description of elliptic curves. More restrictive assumptions on
the coefficients (for example, a1 = 1) lead to special curves which exhibits some
properties leading to the optimization of their computation. In the following pages,
a few types of curves will be studied depending on the context and the goal. To
begin, the simplified Weierstrass form in affine coordinates on R will be used for their
readability. Afterwards, the same curves but in projective coordinates will be handled
and finally Edwards curves and their properties will be presented. Simultaneously,
finite fields will be introduced to replace R.

1A condition exists on the value of the ai coefficients. But this detail is not covered here.

3

2. Elliptic Curve Cryptography

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

Figure 2.1: y2 = x3 − x.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

Figure 2.2: y2 = x3 − x+ 1.

Besides these three types of curves and the two fields cited, in order to present the
basic ideas and tools around elliptic curves, the R field will be used for its intuitive
representation. Later on, other fields will be presented to the reader but for the
moment,the reader should keep in mind that cryptography does not employ the R
field.

Figures 2.1 and 2.2 represent graphically two elliptic curves. They are the two
usual pictures shown as an introduction to give to the reader an intuition what the
EC look like.

2.1.1 Operations on Elliptic Curves

Without entering too much into the details, the curves presented in the previous
section allow the definition of a few mathematical operations on their elements. Stricto

4

2.1. Elliptic Curves

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

P1

P2

R’

R

Figure 2.3: Point Addition.

sensu, there exists only one operation, the Group Law: the addition of two points or
Point Addition. The name of the group law comes from the mathematical formulation.
One says that the set of points on an elliptic curve plus the point at infinity associated
with the Group Law form an abelian group, which is a mathematical construction.

• Addition + : E × E → E

From now on, mathematical details will be left apart and the focus will be put
on the computational aspects. For example, in a larger sense, besides the addition
two other operations are constantly used and cited even if they are not defined in
the Group. But as it will be seen in the next section, these operations are based on
the Point Addition.

• Doubling D : E → E

• Scalar multiplication ∗ : K × E → E

Addition. The addition of two points on the curve is introduced here in a graphical
way, to help the reader get an intuition about the operation. In a second phase, the
mathematical expressions associated to these graphical constructions will be given.

As presented in Figure 2.3, the addition of two different points P1 and P2 on the
curve, with the additional condition that P1 6= −P2, consists first in the computation
of the intersection between the curve and the straight line defined by the two points.
And the final result is the opposite of the intermediate point - its image by an
orthogonal symmetry of axis X. Mathematically, let us define :

P1 = (x1, y1)
P2 = (x2, y2)

R = P1 + P2 = (x3, y3) =
((

y2 − y1
x2 − x1

)2

− x1 − x2,

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1

)
.

5

2. Elliptic Curve Cryptography

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

y
2
 = x

3
 − x + 1

P1

R’

R

Figure 2.4: Point Doubling.

These expressions can be computed with a minimum number of operations
according to the procedure given in Appendix A 2: 3M+6S+1I.

An important point should be noted from now on. In this work, the same
algorithm is applied to do a multiplication or a squaring and so no distinction is
made in the amount of computation as it is usually done. Effectively, the redundancy
of information in the case of the squaring allows to increase the performance of this
operation in comparison with the multiplication. Nevertheless, according to the
purpose of this work, the implementation of the multiplication intends to vary a lot.
Hence, it was decided to make no distinction in order to not double the work.

Doubling. Doubling a point is simply the addition of twice the same point. But
a quick look at the formulae stated in the previous section shows that the same
equations can not be used. Effectively, with twice the same coordinates, the previous
expressions would make a zero appear at the denominator - which is a not defined.
The basic idea of the straight line defined by two points must be rethought in the
extreme case of two points getting closer and closer. The same idea appears in the
definition of the derivative of a curve and that is what is used here. As presented in
Figure 2.4, doubling a point on the curve consists first in the computation of the
tangent line to the curve at this point. Then, an intermediate point is computed
as the intersection between the tangent line and the curve. The final result is the
opposite of the intermediate point - its image by a orthogonal symmetry of axis X.

The mathematical translation of the process gives as result :

P = (x1, y1)

R = −R′ = 2P = (x3, y3) =
((

3x2
1 + a

2y1

)2

− 2x1,

(
3x2

1 + a

2y1

)
(x1 − x3)− y

)
.

2M : Multiplication, S : Subtraction, I : Inversion.

6

2.1. Elliptic Curves

From the computational point of view, the algorithm corresponding to these
expressions – in Appendix A – needs 3: 3M + 3m + 1A + 3S + 1I.

Scalar Multiplication. The scalar multiplication, as stated before, consists in
the multiplication between one point on the curve and an element from the field.
Basically, to multiply by k means that the point P is added k times with itself. In
other words, for k ∈ K and P ∈ E :

k ∗ P = P + P + ...+ P .

The multiplication can be constructed on the basis of the operations seen earlier. For
example, as stated just above, the multiplication could be seen as one doubling (P+P)
and k-1 Additions (2P+P,3P+P,...). Of course, it would make the computation really
inefficient considering the fact that big numbers are manipulated4. A classic way
to tackle this problem is to apply the square-and-multiply algorithm. Basically this
approach starts from the rewriting of the scalar multiplication in the form :

k ∗ P = P + 2 ∗ (P + (P + 2 ∗ (P + (...)))) .

This reformulation leads directly to Algorithm 1 which computes the wanted result.
The kernel of the idea relies on the binary representation of the number k

k = (kn−1, kn−2, ..., k1, k0) .

But even though this algorithm is mathematically well designed, we usually do not
use it in Elliptic Curve Cryptography because its structure is weak against the
several side-channel attacks that we cover later on [29]. Instead, algorithms like
the Montgomery Ladder – illustrated in Algorithm 2 – are used. At the expense of
efficiency, they offer a better security.

2.1.2 Finite Field

As previously said, in cryptography one does not use R as the arithmetic field
upon which the elliptic curves are built. Instead, fields with a finite number of
elements – also called finite fields – are used. According to [10], three main classes
exist: binary fields, prime fields and extension fields. In this work, we make use of
the prime fields such that it is the only one covered.

Prime fields. Mathematically speaking: Let p be a prime number in N, a prime
field Fp is defined as :

Fp = {x ∈ Z : x < p} .
3m: simplified multiplication. A multiplication by 2 is a shift with a modular verification. And

a multiplication by 3 allows short-cuts.
4In the following, the prime fields will be presented. This work uses numbers up to the order of

2192.

7

2. Elliptic Curve Cryptography

Algorithm 1 Left-to-Right Scalar Multiplication.
Input: P ∈ E and k ∈ K
Output: R = k ∗ P

j=max
i
{ki = 1}

j ← j − 1
R← P
for i from j to 0 do
R← 2R
if kj = 1 then
R← R+ P

end if
end for

Algorithm 2 Montgomery Ladder.
Input: P ∈ E and k ∈ K
Output: R0 = k ∗ P

j=max
i
{ki = 1}

j ← j − 1
R0 ← 0
R1 ← P
for i from j to 0 do
if kj = 0 then
R0 ← R0 +R1
R1 ← 2R0

else
R0 ← R0 +R1
R1 = 2R1

end if
end for

In other words, the field N contains all the naturals from 0 to p-1. For what concerns
the operations on this field, four binary operations are accepted in a large sense.
Indeed, the +,-,*,/ can be sum up to +,* if the subtraction is defined as the addition
of the opposite, and the division is defined by the multiplication by the inverse.
Otherwise, they are basically the same as the operations defined on Z but the result
undergoes a modulo to keep the range [0;p-1]. As an example, some operations on
F7 are presented below. Operations on F7 = {0,1,2,3,4,5,6} :

Addition : (4 + 5)F7 = 4 + 5 mod 7 = 2

Subtraction : (2− 4)F7 = 2− 4 mod 7 = 5

Multiplication : (4 ∗ 5)F7 = 4 ∗ 5 mod 7 = 6

Division : (4/2)F7 = 4 ∗ 4 mod 7 = 2

8

2.1. Elliptic Curves

To be complete and being able to divide, an algorithm to find the inverse
of an element must be implemented. [10] proposes several ones: the extended
Euclidian algorithm (not efficient), the binary inversion and the Montgomery inversion.
The binary inversion is designated in order to get a reasonable efficiency without
entering the Montgomery’s complexity with its change of representation and special
multiplication.

Algorithm 3 Binary Inversion in Fp.
Input: a ∈ Fp

Output: a−1 mod p
u← a, v ← p
x1 ← 1, x2 ← 0
while u 6= 0 and v 6= 0 do
while u is even do
u← u

2
if x1 is even then
x1 ← x1

2
else
x1 ← x1+p

2
end if

end while
while v is even do
v ← v

2
if x2 is even then
x2 ← x2

2
else
x2 ← x2+p

2
end if

end while
if u ≥ v then
u← u− v
x1 ← x1 − x2

else
v ← v − u
x2 ← x2 − x1

end if
if u=1 then
return x1 mod p

else
return x2 mod p

end if
end while

9

2. Elliptic Curve Cryptography

2.2 Projective coordinates

Taking a look at the two previous sections, a big problem appears and threatens
the performance of any program using the up to now explained materials. The basic
formulae for point addition and doubling make use of a division. This operation in a
prime field supposes to first find the inverse of the divisor and then multiply it by the
numerator. The first step uses Algorithm 3 stated before which is demanding and
makes an implementation slow. A manner of avoiding this inverse-finding exploits
the rewriting of the expressions in a different coordinate system.

The X-Y system used heretofore is called an Affine Coordinates System. The
proposed change is to go from this system to another equivalent representation.
Several representations exist but the key point is that these new spaces work with
representative points. A point in affine coordinates has several representative points
in projective coordinates. It should be noted now that this detail gives an advantage
against the DPA because it allows to compute an operation with different points but
obtain an equivalent result if the projective points are representative of the same
affine points. Here are some examples of such projective spaces :

Projective coordinates : (x, y) ∼ (X,Y, Z) if x = X
Z and y = Y

Z

Jacobian coordinates : (x, y) ∼ (X,Y, Z) if x = X
Z2 and y = Y

Z3

Chudnovsky coordinates : (x, y) ∼ (X,Y, Z, Z2, Z3) if x = X
Z and y = Y

Z .

In the rest of this section, the simplified Weierstrass curve will be kept and the
used projective coordinates are the Jacobian ones. In a first phase, the equations to
convert the affine coordinates to projective coordinates are described and a short
study of the effects on the point addition and doubling equation is given. It should
be noted that there are a lot of existing projective coordinates systems. They have
their own properties that lead to special optimizations in combination with defined
curves.

2.3 Edwards Curves

As stated in the general introduction to elliptic curves, a lot of different types of
curves exist. Edwards curves are the set of curves described by the equation :

x2 + y2 = c2(1− dx2y2)

where c,d ∈ Fp. Making the simplification c=1 is often done and it will be so in
the following. Hence, the Edwards curves equation will be written These curves ,
discovered in 2007 by the mathematician Harlod M. Edwards and published in his
paper [6], exhibit the special property concerning its addition. By taking a close look

10

2.4. Protocol

at the equations:

P1 = (x1, y1)
P2 = (x2, y2)

R = P1 + P2 =
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)

we notice that no zero will appear at the denominator if we try to add twice the
same point. That property contrasts with what happens in the simplified Weierstrass
curves and allows the use of a unique instruction to add two points or double one
point. This is called the unified operation property. From an efficiency point of
view, the computation of the expression – which follow Bernstein’s indications [1][2]
and can be found in Appendix A – needs 12M+4S+3A which does not propose a
real improvement in comparison with the simplified Weierstrass Curves. In fact, the
benefit for adopting Edwards curves is its property of unified operation. From a
security point of view, the fact that the Addition and Doubling operations are the
same confers an advantage against SPA. Since their implementation and execution
will be the same when the program runs, it makes it possible to hide from the user
whether the addition or the doubling is being ran. A longer explanation will be given
in the section about physical attacks.

2.4 Protocol

A protocol is a flow of defined actions designed to ensure a defined goal. In the
case of this master thesis, the aim is the authentication of an entity. We picked up the
Schnorr protocol for its simplicity of concept. It works basically as a sigma protocol
with three steps: commitment, challenge, answer as illustrated in Figure 2.5.

Commitment : X

Prover
secret key k

Verifier
public key Z=-kP

 point P

Random e
Compute X=eP

Challenge : c

Commitment : y

Choose c

Compute y = e+c*k
Verify that yP+cZ = X

because (e+c*k)P+cZ =
eP+ckP-ckP=eP

Figure 2.5: Schnorr Protocol for ECC.

11

2. Elliptic Curve Cryptography

2.5 Advantages of ECC

There are several factors which made this thesis implement elliptic curves based
security systems. A list of points have to be raised in order to legitimate this choice.
Firstly, the preference for a public key crypto-system rather than for a symmetric
key is covered. Then, we explain the dominance of ECC over RSA.

2.5.1 Public Key vs Symmetric Key

By opting for ECC, we made the choice of public-key over symmetric-key cryp-
tography. This is coherent regarding the context of this work and the comparison
between these two options given in [21] and [14]. We present here a short summary
of the relevant points for our system. One the one hand, a public-key scheme has the
advantage of handling shorter keys and offering algorithms with higher throughputs.
However, besides less good performances, public-key cryptography offers advantage
that made us choose it. In a network involving several entities – such as the CAN
bus of a car where a lot of chips would have to send encrypted data – the manage-
ment of the keys for symmetric-key cryptography becomes tricky. First, the key
distribution of a public-key can be done easily in comparison with the symmetric-key
scheme. Furthermore, with in the symmetric case, the key should be changed often
in comparison of public-keys that can be kept for years. Finally, the key distribution
of the public-key is easier since no secret has to be known in advance.

2.5.2 Comparison to RSA

Table 2.1: NIST recommended key sizes (in bits).

Symmetric Key Size RSA Key Size ECC Key Size
80 1024 160
112 2038 224
128 3072 256
192 7680 384
256 15360 521

As RSA, ECC is a cryptographic tool which is not secured in the theoretical sense
because there exist algorithm to recover the key. These two systems are rather based
on the computational infeasibility of finding the key. Since their appearance, ECC is
predicted as the successor of RSA due to its better efficiency. NIST has published
a table of comparison between the key length of ECC and RSA which ensure the
same level of security. The ECRYPT II report on keysizes [12] gives more detailed
information on the subject. Table 2.1 exhibits an evident advantage of ECC over
RSA on the plan of the key size. But this point also implies the involved amount of
computation in order to encrypt or decrypt something. The longer is the key, the

12

2.6. Physical Attacks

Active Passive
Invasive Laser Fault Injection Bus probing

Non-Invasive Clock Tampering Power Analysis

Table 2.2: Classification of Physical Attacks : Examples.

longer is the time. For some applications as in the automotive world, the length of
the key plays an important role since this amount of information has to be send
on the CAN bus of the car and forms the bottleneck of the authentication process.
As the CAN bus is a message-based system, the information sent should be kept as
short as possible.

2.6 Physical Attacks

The final concern on which a focus is put in this work is hardware security. The
previous sections related the basic information over elliptic curves, and the way
their arithmetic works in order to give an intuition about the provided security.
Afterwards, the NIST equivalence gave an estimate of the amount of security. But
in real implementations, even a perfectly secure algorithm as the one-time-pad could
be broken by an attack based on information from the physical world. The exploited
leakage can originate from very different sources [16] :

- Timing

- Power consumption

- Electromagnetic Emission

- Fault injection (laser, clock, ...)

These few examples form a non-exhaustive list and more channels could be cited,
but this gives a sufficient idea of the possibilities of attack. In fact, all the possible
attacks can be classed following two characteristics [31] :

Invasive/Non-invasive Whether the package of the chip has to be opened or not.

Passive/Active Whether if the attacks tampers with the behavior of the chip or
only listens to information.

Table 2.2 illustrates that classification with four cases.However, in spite of the
multitude of possible attacks, this work will only study the resistance against the
non-invasive and passive Power Analysis Attacks.

13

2. Elliptic Curve Cryptography

Processor
+

Oscilloscope

Figure 2.6: Setup for Power Analysis.

2.6.1 Power Analysis Attacks

As their name implies, those techniques base their approach on the study of the
power consumed by the chip on which a crypto-system is ran. This information
is recorded as traces and can be obtained thanks to an oscilloscope and a small
resistor connected in series between the power supply and the chip as illustrated
in Figure 2.6. A trace is basically a vector of values registering the values of the
power consumption in the time. [15] This information can be utilized in different
ways. In this work, we consider the Simple Power Analysis – or SPA – and the
Differential Power Analysis – DPA – for reason of time. Besides that, we also chose
these two attacks because they confer a reasonable power to the attacker regarding
our application of the Schnorr Protocol in the automotive world. The attacker can
possibly listen to computations of scalar multiplications with partial information on
the input. However, the case of the template attack – where the attacker is allowed
to perform any chosen computation to profile the hardware – seems too strong in
this context.

2.6.2 Simple Power Analysis

This first technique is quite simple in the concept. On the trace of an execution
of the algorithm under test, a visual analysis is applied to try to distinguish the
internal execution of the processor. We say the leakage – if it exists – is dependent
on the instruction.

The reader should note that there exist also more sophisticated techniques of
SPA. For example, the template-based SPA attack used in [20] would lead to a more
rigorous analysis. But in the cadre of this work, the SPA will be kept at the level of
the visual inspection.

2.6.3 Differential Power Analysis

The Differential Power Analysis proposes a method able to crack noisy implemen-
tation thanks to statistical tools. In comparison with the SPA which relies on the

14

2.7. Conclusion

difference of instruction, the DPA relies on the data handled. We do not cover the
subject exhaustively but following the scheme of [19], the idea of these attacks can be
summarized in five steps. Suppose we want to attack an algorithm F which executes
a computation on basis of a known information P and an unknown information k:
F(P,k). The scheme of the attack is :

1. Choose a point of attack : We target an internal value which relies on the
information k and P. For example, we take a bit.

2. Measures power traces : We take traces of the power consumption for known
values Pi.

3. Calculate hypothetical internal value : We make a partial hypothesis on
the secret key k. For example, we make an hypothesis on the two least significant
bits which gives a spaces of four hypotheses. One of these hypotheses is the
good one, the goal from now on is to find which one. On the basis of the known
values Pi and for each of the four hypotheses, we compute the value of the
targeted bit.

4. Map the hypothetical internal values : According to a chosen leakage model,
we extrapolate the leakage of the taken traces at the target bit. For example,
we take the Hamming Weight model. So for each hypothesis, we have the
hypothetical value of the bit from last step for each trace and we use this
information in the Hamming weight model to give the hypothetical leakage at
that point.

5. Compare hypothetical model with reality : Following a statistical method,
verify the hypothetical leakage. For example, we decide to add the traces where
the Hamming Weight is one and subtract the traces with a Hamming weight
zero.
If the hypothesis – and the leakage model – is coherent with the reality, the
additions and subtractions will have a constructive effect and let appear a peak
in the trace resulting from the addition and subtraction of all the taken traces.
If the hypothesis is false, the resulting trace will not have a peak since the
additions/subtractions have a destructive effect.

2.7 Conclusion
In this chapter, we gave all the basic information concerning the Elliptic Curve

Cryptography. The reader should now be able to get to the details of this implemen-
tation and the main issue around it.

15

Chapter 3

Design Choices

A lot of theoretical information has been presented in the previous chapter. In
this chapter, we set the parameters of our implementation. In such a work, three
main aspects are involved and we will explain each choice in the consecrated sections.

The first section describes our choice for the arithmetic layer. The second
cover the used elliptic curves. And in the last section, we adopt the processor our
implementation will run on.

3.1 Arithmetic Field

As arithmetic field, we chose to use the prime field FNIST−P 192. This simple
statement involves in fact 2 different choices for the design :

- The level of security: 192 bits of key

- The prime number NIST-P192 which we will call P192.

192 bits of key. The choice follows the recommendations done on the key size in
the ECRYPT II report [12]. For a ten-years protection1 – or the legacy standard
level – a security of 96 bits is advanced. Regarding the Table 2.1 given in Chapter 2,
an 192-bit key ECC implementation fits the desired security.

Prime number: NIST-P192. The NIST-P192 ,or 2192−264−1 to give it explicitly,
is a standard prime number recommended in the FIPS-186-3[25] publication of the
NIST. The major advantage for using P192 resides in its simplified modular reduction
for (big) integers. 2. The following lines explain this property. Let us take A ∈ N,
with A < P 2

192. This can be written as

A = A5 × 2320 +A4 × 2256 +A3 × 2192 +A2 × 2128 +A1 × 264 +A0

1Ten years seems to be in line with the life-cycle of a car.
2To be used in the modular multiplication

17

3. Design Choices

where the Ai are integers of 64 bits. Hence, this equation can also be written as :

A = (A5, A4, A3, A2, A1, 10)

To operate the reduction, four new numbers need to be define and to be added
afterwards. First let’s define these four integers in the two representations that were
just presented :

S0 = A2 × 2128 +A1 × 264 +A0 = (A2, A1, A0)
S1 = A3 × 264 +A3 = (0 , A3, A3)
S2 = A4 × 2128 +A4 × 264 = (A4, A4, 0)
S3 = A5 × 2128 +A5 × 264 +A5 = (A5, A5, A5)

And the final result equals :

A’ = A mod P192 = S0 + S1 + S2 + S3 mod P192

3.2 Elliptic Curve

Edwards curve were chosen due to the advantage that can be taken in the SPA-
resistance thanks to their property of unified operation. Since the addition and the
doubling are the same, a SPA analysis will not be able to distinguish them. It allows
to bypass the tricks usually used in the scalar multiplication such as the Montgomery
Ladder and get a gain performance.

3.3 Processor

As explained before, the co-design done in this work relies on two main parts: a
co-processor and an hardware acceleration. In this paragraph, the main criterion
chosen to drive the selection of the soft-core are presented. The hardware design will
be covered later on.

In order to operate an enlightened choice the task was divided in two steps. The
first one was to decide wether the processor would consist in a 8-bit or a 32-bit
architecture. The second one was to choose the soft-core itself within the adopted
architecture.

3.3.1 Architecture

Within this decisional process, the cases of the 8-bit and 32-bit architecture were
considered. While the 8-bit architecture proposes a popular low cost choice, the
32-bit provides a computational power way more important at the expense of power
consumption and silicon area. Besides that, the throughput of information towards
and from the memory within 32-bit architectures is also four times higher.

18

3.3. Processor

However, pure software implementations on 8-bit architecture exhibits already
reasonable – but not sufficient since 800 ms is still too long for some applications
– figures in the literature [18]. This confirms the trend where 8-bit are used with
hardware acceleration and 32-bit architectures rely on their computational power.

Since we aim a co-design comparison, we opted for a 8-bit architecture.

3.3.2 Comparison

Table 3.1 gives the summary of the criteria we applied in order to choose our
processor. From the four candidates, the LatticeMico8 and the 8051 seemed really
interesting but we choose 8051 for two reasons. First, this standard processor
really well documented. And secondly, the 8051 processor was already used in some
comparable work about the implementation of ECC [18].

Table 3.1: Comparison of 8-bits processor.

Processor Size (slices) Communication Open Source Multiplier Documentation
LatticeMico8 < 200 opt. UART, SPI, I2C Yes No ++
PacoBlaze ∼ 200 in/out Yes No -
PicoBlaze <200 in/out No No +
8051 600 serial, parallel Yes Yes +

3.3.3 8051 processor

As a result of the comparison made to choose our hardware, the 8051 appeared
to be the most interesting choice. A short description of its basic features is given in
the next chapter.

The 8051, also called MCS-51, is a standard 8-bit processor developed by Intel in
the 80’s. This processor comes with a lot of convenient features as presented below :

� 4 parallel ports

� a serial port

� 2 timers

The Oregano IP [26] used in this thesis proposes a larger amount of parallel and
serial ports for the communication since the author made the number of connections
parametric. Nevertheless, in order to keep this work in a general environment, the
initial number of parallel and serial ports of the 8051 is kept. The clock speed was
arbitrarily set at a value of 12,5 MHz. "Maximum speed"

The 8051 basically works with 3 different memories. Harvard architecture: the
code memory is separated from the data memory. Besides that fact, the processor
also provides the control of two different RAM memory block: the internal and

19

3. Design Choices

Figure 3.1: 8051 Architecture.

the external memories.The former one has a size of 256 bytes (8 bit-address) and
is compulsory since it includes : - the Special Function Registers (SFR), used to
configured the device : - the internal registers, as the accumulators, the usual R0...R7
- some variable from the code

The latter one can handle up to 65536 bytes (16 bit-address) and is not compulsory
if all the variables can be handled inside the internal memory. A more detailed
discussion about the different kinds of memory will be held later on in the chapter
of the optimization done and the possible effect of the memory usage on the global
performances.

3.4 Conclusion
To conclude this chapter, we have chosen to implement an authentication system

based on Edwards curves in projective coordinates defined over the prime field FP192 .
The implementation of this crypto-system is detailed in the following chapters.

20

Chapter 4

Software Implementation

In this chapter, we provide all the basic information concerning the software
implementation such as the data representation and the algorithms. The first part
explains the global architecture, the data representation and the memory management
of our implementation. The following parts detail the functions implemented for
each of our software layers, namely, the arithmetic layer, the elliptic-curve layer and
the protocol layer. The signature of the functions are overviewed and some details
about the C code given. Of course, a detailed analysis of the whole code will not be
done for evident reasons of length but the entire sources can be found in Appendix
??.

4.1 Structure and data

In the interest of reaching the heart of the implementation, three main points
have first to be presented. The first one is the architecture of the code, the second
one is the data handled all along and the third one covers the memory allocation.

4.1.1 Code Architecture

Since the final program intends to be of a considerable size, we have applied a
structured manner of coding right from the beginning. An ECC implementation can
basically be divided into three layers which should be independent each one from
another1: the arithmetic layer, the elliptic-curve layer and the protocol layer. These
layers ones are often represented in a pyramidal form like in Figure 4.1 to illustrate
which layers another layer relies on. As in the OSI model, "a layer serves the layer
above it and is served by the layer below it"[33]. These layers are described in the
next sections.

1Meaning that if the signatures stay the same, the arithmetic field – for example – could be
changed by a layer implementing the Binary Field Arithmetic

21

4. Software Implementation

Protocol

Elliptic

Arithmetic

Figure 4.1: Layered Software Implementation.

4.1.2 Data structure

We chose to represent our variables using two high-level data structures: Fp and
ECPOINT_PROJ. The former represents an element of FP192 which by definition
belongs to the range [0, 2192 − 264 − 1)and so 192 bits are needed to store one of
these. Considering the 8051 is an 8-bit processor, an array of 24 bytes/words is used

word23 word22 ... word1 word0

with the convention that the byte word23 contains the most significant byte while
the byte word0 stores the least significant byte.
typede f s t r u c t {

ELEMENT e [NUMWORD] ; // NUMWORD = 192/8 = 24
// ELEMENT i s a typede f unsigned char

} Fp ;

The ECPOINT_PROJ represents a projective point. We use this coordinate
system to avoid the inversion needed in the affine coordinate algorithms. According
to the definition given in the Edwards curve section, three elements of FP192 – or Fp
– are needed :
typede f s t r u c t
{

Fp x ;
Fp y ;
Fp z ;

} ECPOINT_PROJ;

4.1.3 Memory Management

The last point to cover before beginning the description of the implementation in
itself is the memory management to apply to the 8051. During the execution of a
program, the processor handles data. This means it takes data from the memory,
computes something with it and puts it back in the memory. As seen in Chapter 3,
the 8051 owns three separated memories: one ROM and two RAMs. Here, only the
internal and external RAMs are considered because they are the ones which contain

22

4.1. Structure and data

the data handled by the program: the global variables and the stack. The internal
RAM is small and fast while the external RAM is bigger but slower. Hence, the
programmer has to chose where to put which data, and choosing a memory model
helps him to do so.

First, the different access times to the two RAMs are illustrated fusing exemplary
assembler (asm) code fragments. Then, the different possibilities offered when one
tries to compile a program are presented. Finally, a choice of model is made.

Access times. As often in the use of memory, bigger means slower and the 8051
makes no exception. A good way to estimate the difference between the two access
times is to look at the code for both cases and compare them. In the case of a
variable i located in the internal RAM, a piece of code to read the variable executes :

MOV R0,#LOW(i)

which takes two cycles. In the case of a variable j located in the external RAM, a
piece of code to reads the variable executes :

MOV DPTR,#i
MOVX A,@DPTR

which takes five cycles.
Therefore, one can see the gain that can be obtained by putting the operands

in the internal RAM rather than in the external RAM. Without considering the
memory model, allocating a memory space – internal or external – to a variable can
be done in the code thanks to the syntax :

- char xdata i to put the char i in the external data space,

- char idata i to put the char i in the internal data space.

But of course, it is not convenient to use this syntax for each variable. That is
the purpose of the memory models.

Models. Rather than explicitly associate each variable with a memory space,
memory models control the default case. When nothing is specified, the memory
model applies its rule.

- Small memory model : tries to put all the data in the internal RAM.

- Large memory model : tries to put all the data in the external RAM.

However, the small memory model has the disadvantage that if the program cannot
fit its variables in the internal memory – a case which is highly probable – the code
will not be compiled. Therefore two approaches are possible. Either the programmer
adopts the small memory model and puts manually variables in the external memory

23

4. Software Implementation

until the internal variables fit into the internal memory. Or the programmer adopts
the large memory model and puts manually as many variables as he can into the
internal memory. The first method seems to be easier for the programmer’s task and
is thus applied in this implementation.

4.2 Arithmetic Layer
This layer describes the operations we implemented to operate on prime field

elements. Special optimizations for the field FP192 are as well introduced in the code.
Some tricks, such as pre-computed values, could easily be replaced for other prime
fields. However, the special reduction algorithm that was explained in Chapter 3 is
specific to the NIST-P192 prime number and would require to seriously change the
code for other prime numbers.

unsigned char BiggerOrEqual(Fp *a, Fp *b). This function is a auxiliary to
the code and is used each time the symbol < appears. It goes through the two inputs
a and b to compare their value. If the value of a is bigger or equal to the value of
b, one is returned, otherwise zero is returned. The comparison begins by the most
significant bytes such that the process ends and returns the answer at the first met
difference. Algorithm 4 clarifies the idea.

Algorithm 4 Bigger in Fp.
Input: Fp a,b
Output: 1 if a≥ b, 0 otherwise
for i from 23 to 0 do
if a[i]>b[i] then
return 1

else if a[i]<b[i] then
return 0

end if
end for
return 1

void Add(Fp *a, Fp *b, Fp *c). Taking two input operands a,b this function
computes in a simple fashion their sum modulo p and puts the result in c.2. As
the two inputs are supposed to belong to the range [0,p-1] their sum is necessarily
bounded by 2p-2 and operate a modulo results in at most one subtraction of p.
Nevertheless, since 2p-2 > 2192 and only 192 bits are used to store field elements,
special care should be taken to check for a possible overflow. This point is ensured
by the verification of k at the end as shown in Algorithm 5.

The expression c = c-p is more complex and the two conditions are handled
differently but ends up with the same result :

2From now on, the letter p will replace the number 2192 − 264 − 1 for reasons of concision.

24

4.2. Arithmetic Layer

Algorithm 5 Addition in Fp.
Input: Fp a,b
Output: Fp c
k = 0
for i from 0 to 23 do
c[i] = a[i]+b[i]+k
if overflow then
k = 1

else
k = 0

end if
end for
if k=1 or c>p then
c = c-p

end if

- k=0 and c>p : This case simply uses the subtraction function.

- k = 1 : This case can not make use of the subtraction function since Fp is
encoded on 192 bits and the overflow would need a 193rd bit. However adding
a byte for one bit does not seem interesting, so a simple trick is used: the
precomputed value SubConst=2193 − p < 2193 is added to the value of c. After
an overflow, the value c equals a+ b− 2193 and the addition with the SubConst
directly gives the desired answer :(a+ b− 2193) + (2193 − p) = a+ b− p.

void Sub(Fp *a, Fp *b, Fp *c). This function works with a similar flow than
the addition except that a preliminary test is effectuated. Taking two inputs a,b it
places the result of their subtraction in c. Algorithm 6 details the implementation
which has two possible execution paths depending on :

- a>b : Since a-b>0, the subtraction is simply executed.

- b>a : Since a-b<0, the desired answer is a-b+p. So, the subtraction b-a is
calculated since it gives a positive result without carry problems. Then, this
result is subtracted to p such that the obtained computation is: p-(b-a)=a-b+p
the correct answer.

void Mult(Fp *a, Fp *b, Fp *c). This function stores in c the result of a × b
modulo p. This process involves two main steps, the first one being the multiplication
in itself and the second one the reduction. The multiplication is computed by using
the grade school algorithm from [10] while the reduction is executed as explained in
Chapter 3 for the prime number NIST-P192.

3This subtraction is computed with a loop but it is not written here to be conciser.

25

4. Software Implementation

Algorithm 6 Subtraction in Fp.
Input: Fp a,b
Output: Fp c
k = 0
if a>b then
for i from 0 to 23 do
c[i] = a[i]-b[i]-k
if underflow then
k = 1

else
k = 0

end if
end for

else
for i from 0 to 23 do
c[i] = b[i]-a[i]-k
if underflow then
k = 1

else
k = 0

end if
end for
c = p-c 3

end if

Algorithm 7 Multiplication in Fp.
Input: Fp a,b
Output: Fp c
x = vector of 48 bytes/words
x[i]=0 for 0 ≤ i ≤ 47
for i from 0 to 23 do
U=0
for j from 0 to 23 do
(UV) = x[i+j]+a[i]*b[j]+U
x[i+j] = V

end forx[i+24]=U
end for
c=reduction(x)

26

4.3. Elliptic-Curve Layer

4.3 Elliptic-Curve Layer
The elliptic-curve layer contains only two functions in the case of Edwards curves.

The first one is the Point Addition of two points on the curve and the second one is
the scalar multiplication.

void EC_Edwards_Add(ECPOINT_PROJ *p1,ECPOINT_PROJ *p2,
ECPOINT_PROJ *res, Fp *d). This function take as input two points p1
and p2 in the projective coordinates system and computes the sum of this two points
on the curve following the algorithm given in Appendix A. The fourth parameters is
the parameter for the Edwards curve.

void EC_Edwards_Mult(Fp *k,ECPOINT_PROJ *p,ECPOINT_PROJ
*res, Fp *d). This function takes as input a prime field element k and a point
p and computes the scalar multiplication with the square-and-multiply algorithm
presented in Chapter 2.

4.4 Protocol Layer
The protocol layer consists in the implementation of the high-level authentication

scheme. In this work, we did not programmed this aspect of the system to rather focus
on the Elliptic-Curve layer and the co-design comparison. But if it had to be done
in future developments, the layer would involve the three main steps of the Schnorr
protocol: commitment, challenge and verification. These operations basically rely on
the scalar multiplication and the field arithmetic but make appear the communication
between the two entities. In the automotive world, the communication between the
verifier and the prover occurs on a CAN bus. The implementation should be able to
handle such a channel of communication besides the ECC.

4.5 Results of the implementation
The implementation presented so far was successfully tested for a half-dozen of

points and scalars by using the online Magma Calculator to verify the result. The
scripts used to compute some values on the curves can be found in Appendix D.
Concerning the time taken for an execution, we ran the target with a 12.5 MHz clock
and obtained a duration around 29 seconds.

In this chapter we present a lot of functions with conditional executions of
sub-functions. We note that here, because it becomes a problem in the security
assessment.

4.6 Conclusion
Regarding the amount of code that already exists at this point of the task, it

should be noted that this layered structure gives a real benefit. Besides the advantage

27

4. Software Implementation

on the organization, the arithmetic layer could be change without problem if the
naming stays the same. Concerning the performances, an obvious conclusion is that
improvement can and must be done in order to lower the timing to a reasonable
duration.

28

Chapter 5

Hardware Acceleration

This chapter handles the speed-up of the previously presented implementation.
In order to increase the performance of the software application, a first analysis of
the code will be executed. By doing this, it becomes clear where the bottleneck of
the system is located. The second step consists in removing the bottleneck by adding
hardware modules in order to accelerate a specific process. Different modules are
considered and their impact shortly studied. After the hardware implementation,
a second analysis of the bottleneck leads to some specific ASM optimization of the
code. The chapter ends with the validation of the implemented co-design by running
some tests.

5.1 Overview

In fine, a co-design results from the combination of software and hardware. As
such, a co-design represents a trade-off between two extreme cases. On one side
the implementation of the crypto-system could be a C code running on a standard
processor i.e. a pure software implementation. It makes it relatively cheap to develop
and really flexible in the maintenance. On the other side, the implementation could
be a specific ASIC executing a precise task as it exist for AES for example. It makes
it fast but difficult to change.

In this work, the adopted work flow proposes to start from the C version which
offers a structure, profile the code, and transfer parts of the computation to the
hardware. The process can be done iteratively to finally ends up with a trade-off
between hardware and software. Where to place the boundary is no easy question
and depends on goals and constraints. In this chapter we propose to transfer some
computation to the hardware on basis of some analysis. Concerning the effects of
those changes and a discussion what the best option is -if one exists - is left for
Chapter 7.

29

5. Hardware Acceleration

5.2 Bottleneck Analysis

The profiling shown on Table 5.1 corresponds to the hierarchical study of the
function EC_Edwards_Mult which computes the scalar multiplication k*P. For each
sub-function called in a function, the number of call and the cycles corresponding to
the execution of the sub-function are roughly estimated. This mode of presentation
is used to help the reader verify the addition of times spent in each sub-function
equals to the time of the caller function. And finally, this table reveals an highly
expected fact: a majority (∼ 95%) of the time consumed by the computation of a
scalar multiplication is spent in the modular multiplication of two elements from
FP192 . This is thus the first bottleneck that is going to be tackled by accelerating the
multiplication.

Function Sub-Functions Cycles # Appearances in Function
EC_Edwards_Mult_Soft 245M

EC_Edwards_Add 850k ∼ 288 1

EC_Edwards_Add 850k
Mult 68.5k 12
Sub 6k 4
Add 5.1k 3

Table 5.1: Profiling of the C code.

In order to accelerate the multiplication, the Montgomery’s multiplication [10]
is a method often exploited. In this work, it was arbitrarily chosen to stuck to the
grade school multiplication presented in Chapter 4. In that context, an obvious
choice was made: increase the size of the multiplier. Since the main loop of the
algorithm has a size which depends on the ratio:

(
|| Operand of Multiplier ||

||Element of FP192 ||

)2

doubling the size of the multiplier would divide by four the number of loop cycles.
However, other factors arise and lower this gain: the handling of the carry-propagation
in C, the overhead created by the traveling of data between the processor and co-
processor, ...

1Considering the fact that a bit ’1’ involves 2 point additions and a bit ’0’ one point addition, the
average number of point additions for a uniformly distributed scalar equals to 192×(0.5×1+0.5×2) =
288

30

5.3. Interface of communication

5.3 Interface of communication

Now that the bottleneck is detected, the presented work flow plans the addition
of hardware modules besides the soft-core. On the one hand, there is of course the
module in itself. But in the other hand, the interface of communication between
the processor and the co-processor is a key factor that will also directly affect the
performance of the acceleration. Ideally this interface should stay the same for all
the hardware modules such that the comparison between the modules is possible
without effect of the interface. In reality, this principle is not applied for all the
modules that will be presented. The interface of communication changed for simple
reason that will be explained.

First one has to analyze the offered possibilities. As a reminder, the 8051 owns
three ways of communication with the external components: the serial port, the
parallel port and the memory. On that basis three cases were considered :

- Memory mapped

- Parallel port Communication

- Serial Communication

Right from the beginning, serial communication was dismissed because it would
force the co-processor to have a block handling the serial communication and was
considered to complicated. The two other interfaces are used in the following sections.
The parallel port was first used because of the easiness of its development/program-
ming. Using this mean of communication appeared to be a simple and working idea.
With the time, it became obvious that the overhead created by the moves of the
operands between the memory and the co-processor through the CPU represented a
non-negligible amount of time. This point made us use a memory mapped interface
to command the 192-bit co-processor. A posteriori, the memory mapped interface
would not be more efficient in the cases of the 8-bit, 16-bit and 32-bit multipliers
since these multiplications involves too many different operands in the code. In
comparison, the 192-bit multiplier was successfully summarized as twelve different
cases (two fixed locations to take the input from and a location to write the result).
The smaller multiplications involve too many operands at different memory locations.
One way to tackle this problem would be to move the operands at a precise memory
location but it would also create an overhead. Another possibility is the writing in
memory the location of the operands which means writing three times two bytes.

5.4 Basic blocks: 8x8, 16x16, 32x32

In line with what was said in the previous section, the first three modules that
were implemented are built with a communication based on the parallel port. Figure
5.1 illustrates the configuration put in place. It makes use of three out of the four
parallel ports :

31

5. Hardware Acceleration

Processor Co-Processor

P0 : control

P1 : data

P2 : data

Figure 5.1: Parallel communication interface.

P0 : sends command to the co-processor.

P1, P2 : transfer 2 bytes from/to the processor to/from the co-processor.

In reality, stricto sensu, no actual command is sent to the co-processor. The basic
reason for that is the internal architecture of the modules. In order to be efficient in
the re-use of the code and to be able to compare them, the same approach was used
such that they all -8x8, 16x16 and 32x32- work on basis of Finite State Machine.
The sending of commands on P0 result in the sending of precise to switch from one
state of the FSM to the next one. This point is more easily clarified by a quick look
to Appendix C where the codes can be found.

Concerning the computation in itself, no special effort was made to improve –
if possible – the Xilinx process to synthesize the * VHDL operation into FPGA
elements. Actually, for the 8-bit and 16-bit multiplier, the synthesis uses directly
the 18-bit hardware multiplier existing inside the Virtex2 FPGA. For the 32-bit
version, the Xilinx tool employs four times this same block to construct the wanted
multiplier.

Of course, this approach can not be continued for big multipliers since the synthesis
of a 64-bit multiplier would burn more resources than available. Furthermore, even
if synthesizing such a big block was possible, it would not be a good solution. It is
preferable to develop an sequential architecture which re-use the hardware and takes
a few cycles rather than use a huge combinatorial module which would compute the
result in one clock cycle.

5.5 192-bits modular multiplication

In this section we cover the design of our bigger multiplier. Regarding the
consideration done in the last section about the resource utilization. We intend to
develop an architecture more efficient in resources utilization than what the VHDL
tools would generate for a 192-bit multiplier. This section is divided in two parts.
The first one covers the second interface which is now possible to implement as
explained earlier. The second part cover the multiplier in itself.

32

5.5. 192-bits modular multiplication

5.5.1 Interface

The adopted memory mapped interface of communication is illustrated in Figure
5.2. The module fetches the byte of information directly from the memory. In the
figure, we see the Multiplexer block which allows the memory access to the 8051 or
the co-processor in an exclusive way: the two entities can not access the memory at
the same time. The interface works basically as follows: when the processor wants
the co-processor to compute a 192-bit multiplication, it sends a byte on the parallel
port. This byte contains the information it has to start and where the input can be
found and where to put the result. We are able to do all that in one byte because
there are only twelve cases. Therefore the processor sends only the reference of the
configuration – a number between zero and elven – and the memory location are
hardcoded in the hardware module. This has the advantage to keep the overhead
minimal.

External
RAM

Processor

Co-Processor

Multiplexer

Data Out

Data Out

control

 we, data,
 address

 we,
data, address

we, data,
 address

Figure 5.2: Memory Mapped Interface.

5.5.2 Multiplier

Concerning the multiplier, as it was related earlier, a special After research-
ing on the subject , three architectures were seriously considered and are briefly
overviewed to defend the choice made:

• Divide-and-Conquer [27]

• Broadcast [4]

• Horner Architecture [24]

Divide-and-Conquer. This method is the hardware equivalent of the Karatsuba-
Ofman algorithm [13]2. The goal being the computation of the multiplication between

2 Actually, the Karatsuba-Ofman algorithm gives an additional trick to end up with only 3
multiplications. But this part is not covered here since it does not change the conclusion.

33

5. Hardware Acceleration

two n-bit operands A and B, the idea is to split the two operands in two n
2 -bit. The

multiplication then consists in the sum of four multiplications between two operands
of n

2 bits as follows :

A = A12
n
2 +A0

B = B12
n
2 +B0

A×B = (A12
n
2 +A0)(B12

n
2 +B0)

= A1B12n +A1B02
n
2 +B1A02

n
2 +A0B0 .

In the case of this work, four multiplications between two 96-bit operands would
be required. A 96-bit multiplier is still too big to be synthesized on a FPGA but
the method can be applied recursively such that sixty-four multiplications of 24-bit
operands. From that short presentation, one can say that this method is greedy and
would consume a lot of FPGA resources. Indeed, the Virtex2 used in the lab furnishes
forty-eight 18x18 hardware multipliers. These one would allow to build twelve 24x24
multipliers since they are built from four of the 18x18 multipliers. Furthermore, the
force of the Divide-and-Conquer resides in the parallelism. Such a parallelism is not
possible in our case where the Xilinx IP memory must be accessed byte by byte.

As a final note, this method sound greedy and not obvious to implement since
the addition of 64 multiplications have to be added

Broadcast. This multiplier divides the two n-bit operands in k word of n bits
such that k.n=n. The computation consists in several round using k multipliers
to get first the result (Ak−1Ak−2...A1A0).B0, then (Ak−1Ak−2...A1A0).B1, until
(Ak−1Ak−2...A1A0).Bk−1. Besides that computation a accumulator adds the result
of the multiplication shifted in order to end up with the result of AxB as follows :

A×B =
k−1∑
i=0

((Ak−1Ak−2...A1A0)×Bi >> i p) .

According

Horner. This architecture process the multiplication of two n-bits operands with
only shift and addition. This architecture proposes the recursive use of a basic block
as illustrated in Figure 5.3. The basic idea is that one of the two operands is scanned
bit by bit from right to left. For each bit scanned, an accumulator is multiplied by
two – shifted one bit to the left –, then if the scanned bit is ’1’, the other operand is
added to the accumulator, if the scanned bit is ’0’ , zero is added. This architecture
is really light compared to the two others. However, if its execution time is

Chosen architecture After this comparison, we decided to adopt the Broadcast
multiplier since it seems to be the best area/time trade-off of our three candidates.
The module presented earlier is depicted with high-level blocks in Figure 5.4. We

34

5.6. ASM optimization

Figure 5.3: Horner’s Rule-Based Architecture. Source :[3].

decided to divide the operand in 24 bytes. Since the RAM outputs byte, it seemed a
advised choice. One operand is fetched in the memory by an FSM. And the other
operand is not stored but treated on the fly: each cycle, we receive a byte from
the memory and execute a 8×192 multiplication that we add to the accumulator as
explained earlier. To that piece of hardware, we also added the hardware translation
of the special reduction for NIST-P192 as presented in Chapter 2. The first step is
to construct the four numbers defined by the concatenation of bits from the final
result of the multiplication. The hardware equivalent of this is basically a re-wiring
which is cheap in hardware resources. The second step consists in adding these four
numbers. And finally, we subtract a number depending on the value of the obtained
sum :

sum < p : sum ← sum

p < sum < 2p : sum ← sum-p

2p <sum < 3p : sum ← sum-2p

3p <sum < 4p : sum ← sum-3p .

After this reduction, the result is kept in the module and sent by the FSM when
the module receives the command from the processor.

5.6 ASM optimization
As the last step in this co-design, after all the optimizations brought to the

multiplication modulo p, the new profile of the Point Addition shows an interesting
point of view on the current state. Indeed, Table 5.2 reveals the predictable fact
that the trends reversed itself during the optimization process. The amount of time
consumed by the multiplication represents at most 3 percent of the time.

The new bottleneck is now the Addition and Subtraction from the arithmetic
layer. In fact, without too much effort, a big improvement can be brought to these
two functions. When analyzing the ASM code obtained by compiling the C code, one

35

5. Hardware Acceleration

Multiplier
8x192

A_23 A_0...

B

Shifter Adder
192 bits

FSM

A_23 A_0...

192

8

200

384

384
384

Figure 5.4: Schematics of the 192-bit Co-Processor.

Function Sub-Functions Cycles # Appearances in Point Addition
Mult_192 90 12

Sub 6000 4
Add 5100 3

Table 5.2: Profiling of the Point Addition.

can see that a lot of time is spent in the computation of the memory locations of the
variables. Indeed, in order to access a byte contained in a vector which is owned by a
structure, the program begins by the structure, then access the vector and finally the
precise index inside this vector. The previous point slows down the implementation.
If the previous C version is replaced by an optimized assembly version where the
computation of the index is done on base of the programmer’s knowledge, a good
improvement can be achieved as illustrated by Table 5.3.

Function Sub-Functions Cycles # Appearances in Point Addition
Mult_192 90 12

Sub 1100 4
Add 1100 3

Table 5.3: Profiling of the Point Addition with the ASM optimization.

The 1100 cycles which appear in Table 5.3 results from the the mean of two
possible executions of the Subtraction/Addition software. In one case, only the
Subtraction is executed, in the other case another Subtraction is executed at the end
of the function to operate a modulo. The two cases take respectively 800 and 1400
cycles. Assuming that the modulo is applied fifty percent of the time, we compute
the average: 0.5*800+1400*0.5=1100.

36

5.7. Testing

5.7 Testing
Finally, after all these optimizations, an implementation with a reasonable timing

was obtained and allowed to test more exhaustively the validity of the code. In order
to check possible errors in the code, 25 thousands scalar multiplication were executed
consecutively and the final result compared with a test vector. As the end result was
the same, we draw the conclusion that no error occurred during these 25 thousands
iterations. The used test vector were generated with the online version of the Magma
Software[9] running the scripts from Appendix D.

5.8 Conclusion
The applied bottleneck analysis led us from a pure C software implementation

to our final result through several types of steps. At first, the improvements were
purely hardware and made us develop several co-processors. Then, we continued
with the assembly optimization of the arithmetic layer. The final analysis shows that
there is still place for improvement. Indeed, the addition and subtraction – which are
supposed to be light operations – are each ten times longer than the multiplication.

37

Chapter 6

Security Assessment

In this chapter, an attempt to estimate the level of practical security ensured
by the developed co-design will be directed. As theoretically introduced in the
first background information chapter of this thesis, even perfectly secure scheme of
encryption can be attacked in real-life cases. The so-called side-channel leakages
can lead to the break of a system. In the following sections, the only channel of
information that will be used is the power consumption.

In a first phase, traces of power consumption will be analyzed to crack the secret
key of the implementation. Based on the found leakages, fixes will be put in place in
order to prevent the attacks. At the end of the first phase, the implementation is
believed to be resistant against a visual SPA.

In the second phase of this security assessment, the problematic of the Differential
Power Analysis will be tackled in a more theoretical way. No real attack was lead
but theoretic arguments are advanced to prove the DPA-resistance.

6.1 Experimental setup

As introduced in Chapter 2, the Power Analysis attack takes place thanks to
an experimental setup. Traces of the power consumption are obtained thanks to
the measure of the voltage drop on a resistor connected in series between the power
supply and the target. Such an experimental setup consists in two entities that we
briefly describe :

- The target

- The measurement tool.

The target. As a target we use the Sasebo G board [23] which proposes two Xilinx
Virtex2 Pro: xc2vp7 and xc2vp30. The latter is the one on which we load our designs
and take measures. This attack board is dedicated to the side-channel analysis. The
FPGA receives the power supply through a 1Ω resistor connected in series. This
value is convenient since the voltage dropped across the load has the same value

39

6. Security Assessment

than the current which flows in it. Indeed according to the Ohm’s law: V=RI = 1.I,
in this case.

Besides the analysis, the board allows the user to connect any clock source. We
choose 12.5 MHz in order to obtain a reasonably fast UART connection.

The measurement setup. To measure the traces an oscilloscope Tektronix DP0
7254 is used. Thanks to its bandwidth of 2.5 GHz and sample rate up to 40 GS/s
we are able to receive traces of high quality on the computer stations to which it is
connected.

6.2 Point of attack
According to [7], at least two points are good targets in the attack against the

Schnorr Protocol. Referring to the terminology used in the description of the protocol,
the two proposed attacks are :

- The scalar multiplication c*P

- The arithmetic multiplication k×c.

In this work, we focus entirely on the scalar multiplication and do not consider
the arithmetic multiplication even if the threat is real.

6.3 Simple Power Analysis
As stated in the introduction, this first attempt to break the implementation

consists in the visual analysis of power traces recorded from a computation. The
secret key is unknown to the analyzer and this one tries to recover the full key or a
maximum information about it. The analysis of the code is done on the coprocessor
for 192-bit multiplication because the traces are smaller and it makes it easier to
see patterns. One will see that it allows to find quickly the first weaknesses of the
code. In fact, two threats to the SPA-resistance were found. Each of them is first
exhibited and then resolved.

6.3.1 First Attack : Conditional arithmetic operations

The first weakness that is described here takes its origins in the arithmetic layer.
It illustrates the statement from [28] saying that the side-channel resistance should
be taken into account at all levels of abstraction. This case shows that an error in
the arithmetic layer can lead to the break of the whole implementation.

On Figure 6.1, one sees the consumption traces of a Point Addition. Annotations1

help the reader see the internal execution of the operation. The series of operations:

M,M,M,M,M,M,S,A,M,M,S,M,A,A,M, S, S,M,M

1M,A,S stand for Multiplication, Addition, Subtraction with the number of time they are
executed consecutively.

40

6.3. Simple Power Analysis

Figure 6.1: One Point Addition.

reflects exactly the C code. And in fact, this point is not a problem. Of course, it helps
to distinguish the operations executed but as part of an invariant code – a code which
executes always the same series of operations – this lead to no important leakage.
The weakness is rather the variable execution of the Addition and Subtraction of
the arithmetic layer. For the Subtraction, for example, as stated in Chapter 4, a
conditional subtraction is operated at the end of the function in order to apply a
modulo. That is the reason why the annotated Subtraction on the trace involves
sometimes one and sometimes two sub-parts.

To fix this weakness one can make the arithmetic time-constant by modifying
the C code. Of course, it leads to a decrease in the timing performance, but this is
the price one has to pay to get closer to the SPA-resistance.

In the case of the Subtraction function, a dummy subtraction by the value 0 is
inserted in Algortihm 6 and leads to the a modified version which is summarized in
Algorithm 8. The same kind of modification is applied to the Addition operation
and these changes lead to the desired invariant execution illustrated by the power
trace on Figure 6.2.

Algorithm 8 Time-constant subtraction in Fp.
Input: a,b in Fp

Output: c = a-b mod p
if a > b then
c = a - b;
c = c - 0;

else
c = b - a;
c = p - c;

end if

41

6. Security Assessment

Figure 6.2: Invariant execution.

Figure 6.3: Unequal intervals.

6.3.2 Second Attack : Unequal intervals of time

The second weakness takes its roots in the Elliptic Layer. Figure 6.3 exhibits
the existing problem. One can clearly distinguish that the gap between two Point
Additions is not always the same. This information reflects perfectly the C code
summarized by Figure 6.4. Some details of the implementation were removed but one
can see that as explained in Chapter 5 the three coordinates of two points have to be
put at a precise memory location to let the hardware compute their sum. Then the
result can be taken from a precise memory location. These movements of memory
space create unequal intervals when executed in a loop.

42

6.3. Simple Power Analysis

Move
2 Points

Loop on
keybits

Point
Addition

Move
2 Points

Point
Addition

Move
1 Point

Move
2 Points

Point
Addition

Move
1 Point

1

0

Figure 6.4: Graphical Representation of the Software.

In order to fix the problem, one could think of implementing a series of NOP2 in
assembly such that the intervals become of the same length. In fact, this trick would
make equal intervals but the result would not be SPA-resistant. The series of NOP
creates a visible gap in the power consumption as attested in Figure 6.5.

Figure 6.5: Effect of NOP’s.

To avoid these unequal intervals without using NOPs we put in place a more
regular structure where the same function is repeatedly called with always the same
movement of memory as shown in the simplified piece of code presented in Listing
6.1.

If visually, Figure 6.6 seems to show that the SPA security is ensured, the reality
is different. Indeed, the evaluation of the statement inside the IF instruction still
creates unequal intervals. These differences are distinguishable by subtracting two
different traces or superposing a slid version of the same trace. Figure 6.7 depicts
the trace of two computations and their difference. One of the traces represents the
processing of the bit sequence "01" and the other one the sequence "10".

2NOP is an instruction of the 8051 instruction set which dictates to do nothing i.e. no
computation, no change in the register or memory contents, etc.

43

6. Security Assessment

i f (keyb i t==1)
{

// 2∗P1+P
EC_Edwards_operation (. . .) ;
EC_Edwards_operation (. . .) ;

}
e l s e
{

//2∗P1
EC_Edwards_operation (. . .) ;

}

Listing 6.1: Regular Sctructure

Figure 6.6: Visually Equal Intervals.

Another leakage – which is not illustrated here – resides in the BiggerOrEqual
function. As said in Chapter 4 , the function stops as soon as the two compares
inputs are different. Even if it is unsure if the leaked information is important, it
still represents a weakness in the SPA-resistance.

To conclude this analysis, two security issues still exist. One of them is known
to allow to discover the key if the attacker knows the program. In case where the
attacker doe not know the program, he still sees the gaps but does not know if the
longer gap is associate to a bit zero or a one. Hence, he ends up with two possible
keys. He only has to try the two possibilities to discover the key.

In order to obtain the SPA-resistance, we should modify the implementation
to make it even more regular. The final result should provide a data independent
execution.

6.4 Differential Power Analysis

This section has the purpose to outline a way to protect our implementation
against DPA attacks in future developments. We did not implement the proposed

44

6.5. Conclusion

Figure 6.7: Up: Power traces of keys 0x5 and 0x6.
Down: Difference of the two traces.

method because as stated in the design flow [7] it makes little sense to look for a
DPA-resistance if an implementation is not SPA-resistant. Nevertheless, we present
the Randomized Projective Coordinates technique from Jean-Sebastien Coron [5]
in order to give perspectives on the reachable security once the SPA-resistance is
reached. Other techniques exist, but this method has the advantage to only use one
scalar. The Point Blinding uses two scalar multiplications for example.

The Randomized Projective Coordinates technique is based on the fact that in
the projective coordinates we use (X,Y, Z) ∼ (λX, λY, λZ)3. In other words these
two coordinates correspond to the same point and both can used to compute the
scalar multiplication. Hence, it suffices to change the λ for each scalar multiplication
and we get a DPA-resistant implementation. Indeed, the attack explained in Chapter
2 is based on the development of internal values from the point P and an hypothesis.
But since, the target is not only dependent on the input, but also a random λ, the
attack is not feasible anymore.

6.5 Conclusion
In this section, we cracked the implemented system by means of power analysis

attacks. More precisely, SPA attacks were sufficient to completely break the imple-
mentation. Two security issues still remain and make our implementation insecure.
Nevertheless, even though we lack time to implement them, ways to make it secure
exist.

3But it also works for other projective coordinates systems.

45

Chapter 7

Comparison

In this chapter, we give a comparison of the co-designs developed on basis of four
different aspects: the execution time, the area utilization, the energy consumption
and the ensured security. For each one, we introduce their relevance in our context
and compare their performances. We chose these four parameters to limit the scope
of our work. Others specifications could be added such as the flexibility of the
co-design, the code size, the memory utilization.

7.1 Execution time

This specification appears in the first place since it drove a major part of the work.
The end-user allows a lot of importance to this performance in different context of
the automotive world. If the authentication system serves as the key of the car, the
time should be as short as possible since the user does not want to wait too long.
For the car manufacturer this number also impact the utilization rate of a processor.
If the task is light, other program can be ran in parallel.

Table 7.1: Speed of each version.

Version Duration [cycles] Time at 12.5Mhz [s]
C 362.5M 29

Assembly 412.5M 33
8-bit multiplier 512.5M 41
16-bit multiplier 262.5M 21
32-bit multiplier 150M 12
192-bit multiplier 8.1M 0.647

Table 7.1 gives the comparison of the speed between all the versions in seconds
and in cycles. The time in cycles is the measure usually preferred since it is clock
independent. Besides that, the time in seconds is shown to give an idea about when

47

7. Comparison

run when the system runs at 12.5 Mhz. The time can be measured thanks to the
C code in Appenix B. Here, due to an unexpected lack of time, the figures are
extrapolated from the timing in Appendix E.

First, one sees the odd result that the assembly version ends up with a longer
execution time than the C version. Thi result is misleading since usually the
assembly program are faster than their C equivalent. What is named "Assembly
version" designates a version where we wrote our own asm code to use the 8-bit
multiplication instruction. We did that experiment because we thought that the C
version could have suffered from a bad translation in asm. After analyzing the two
codes it turns out that our asm multiplication is slower due to :

- It is not easy to access members of a vector in asm. So, we put the values first
in a simple variable and then access the variable in asm. This intermediate
decreases the efficiency.

- The compiler translates perfectly the C multiplication in asm. While, the C
code puts the result in a 16-bit variable and then separate the result in two
bytes thanks to masks and shifts, the compiler understands and puts directly
the result in the separate C variables.

For the other figures, we see the expected result from the co-design process.
There exists an improvement factor of 45 between the software implementation
and our fastest co-design. Within the smaller co-processors, we see that the 8-bit
co-processor decreases the performance of the system since it introduces an overhead
without providing more computational power1. Then, we see that from a 8-bit
coprocessor to a 16-bit co-processor a improvement factor two is achieved. But this
factor decreases for a transition from a 16-bit to a 32-bit multiplier. Two reasons
explain that decreasing improvement. The first one is the memory. The two inputs
and the result of the co-processor have to be sent through the parallel port which
creates an increasing over-head to the computation. The second factor is the C carry
management which is not efficient. For the 192-bit co-processor the two problems are
solved since we use a faster interface and the carry propagation is handled directly
in hardware. The management of the reduction in hardware gives the benefit of not
using the addition function which is still slow. To conclude, and by comparing to
some existing 8-bit implementations [18], we can say that we have a rather inefficient
software implementation but that the hardware acceleration helps to get finally with
the 192-bit multiplier a usable implementation in a non real-time context.

7.2 Area utilization
The area utilization is a parameter which directly reflects the price of a hardware

implementation. Indeed, the area utilization gives an idea about the silicon area
consumed by the device. And this area can be directly translated into a price for the

1It was an expected result. Actually, we introduced the 8-bit co-processor to have a better set
to assess the trend of the co-processors on the parallel interface.

48

7.3. Energy consumption

manufacturer which is one of its most important parameter. Therefore, we chose to
take it into account. Table 7.2 gives the resources utilization for five configurations
since the assembly and software version have the same hardware. Basically four
numbers are given: the number of slices, the number of Lookup tables, the number
of flip-flops and the number of 18×18 hardware multipliers. We do not take into
account the memory block as the RAMB16 because the memory configuration is
fixed and not in the scope of this work.

A more detailed comparison is given by translating the resources into their
transistor structures and using the transistor as common unit of measure. To
estimate the structures we followed the indications given in [8] [11] and took 164
transistors for the 4-input LUT, 12 transistors for the flip-flop and 4536 transistors2

for the 18-bit multiplier.

Version Slices LUT4 Flip-Flop 18x18 multipliers Transistors Estimate
Without co-proc. 2066 3857 505 1 643k
8-bit multiplier 2171 4019 563 2 675k
16-bit multiplier 2216 4071 605 2 683k
32-bit multiplier 2298 4198 645 5 720k
192-bit multiplier 5074 9326 1455 13 1.6M

Table 7.2: Resources Utilization.

The numbers given in Table 7.2 indicates that when kept smaller than 16-bit, the
hardware acceleration does not cost a big area. For an increase of ∼10% of the area,
the hardware module can be implemented.The reason for this good performance is
that 18-bit x 18-bit multiplier is provided. However, four 18-bit multipliers have to be
combined to build for a 32-bit multiplier in a combinatorial fashion. In comparison,
with a broadcast architecture, a 72-bit multiplier could be built and executed in a
few cycles. These resukts justify our followed approach. The final point that we
would like to highlight is the area taken by the hardware multiplier. According to
our estimations, it represents a minor percentage of the design. What cost in all
what is around the multiplier: the FSM, the registers, ...

7.3 Energy consumption

The third parameter we opted for is the energy consumption. From one part, it is –
with the timing – the most important performance for the manufacturer and end-user.
Table 7.3 gives the figures for the energy consumption of a scalar multiplication.
The given numbers represent the energy consumed for a key uniformly distributed –

2Following the rule which says that n2 full adders are used for a n-bit multiplier and counting
14 transistors by full adder[32].

49

7. Comparison

meaning that on the 192 bits, 96 are zeros and other are ones. The method applied
to find this information can be found in Appendix E.

In the context of the automotive world, the energy consumption is of big im-
portance since the quantity of energy in car battery is limited. We can not let the
electronics embedded in the car totally discharge the battery.

Version Energy Average Power Peak Power
C 4.02 J 0.138W 0.148W

Assembly 4.68 J 0.139W 0.151W
8-bit multiplier 5.46 J 0.132W 0.145W
16-bit multiplier 2.58 J 0.122W 0.13W
32-bit multiplier 1.6 J 0.135W 0.146W
192-bit multiplier 0.119 J 0.179W 0.239W

Table 7.3: Figures for a Scalar Multiplication.

After analyzing Table 7.3, we notice the factor two between the energy consump-
tion the 8-bit and 16-bit multiplier. It is an expected result since the two versions
use nearly the same hardware – an hardware 18-bit multiplier is used in the two
cases– but the version with a 16-bit multiplier is twice faster.3

For the 192-bit multiplier, we see two expected facts. The peak power is higher
than for the other cases and this point can be easily noticed on the SPA traces
from the previous chapter. But the speed-up operated thanks to this hardware
acceleration allows to lower the energy consumption by a factor ∼35. We add to
that point that our context of automotive application allows us to not worry about
these high peaks. This is not the case in all application. In more limited application
– RFID for example – peaks

7.4 Security
The last point we elected as a parameter is the hardware security. This issue

has become one of the main topic in the last decade for embedded implementations.
This section does not really include a comparison since all our versions finally use the
same structure: the same scalar multiplication, the same point addition. They also
have the same arithmetic layer except that the multiplier used inside the the grade
school multiplication is different. Here, we only repeat the conclusion of the previous
chapter. The final implementation does not exhibit the property of SPA-resistance
since the scalar multiplication still has a key dependent execution and that the
BiggerOrEqual function still is input dependent.

3Table 7.3 shows that the 16-bit hardware owns a lower power consumption than the 8-bit. It
seems strange and since no experience was done to confirm that point, we can not draw a conclusion
about that.

50

Chapter 8

Conclusion

As result of this master thesis, we ended up with the expected result that the
hardware acceleration leads to a faster, and less consuming system at the expense
of a bigger area. This comparison is illustrated by the quantitative ratio obtained.
The hardware acceleration made us come from a pure software implementation to a
co-design with a factor 45 on the speed, a gain factor 35 on the consumption and
a loss factor 3 on the area. But it must be noticed that for a smaller price – 10
percent of the area – improvement factor around two to three in time and energy
consumption can be obtained.

In the end, we finish with a set of non-SPA-resistant implementations. The
fastest design – the 192-bit multiplier – takes 0.65 seconds when ran at 12.5MHz
which is reasonable but not usable in real-time application. However, the final
bottleneck analysis shows that there is still place for improvement since the addition
and subtraction – which are supposed to be light – still take the major time of the
computation.

In the future, this work could be continued and improved in several ways. First,
on the security side, a more regular structure for the scalar multiplication could be
implemented in order to get a data independent execution of the code and ensure
the SPA-resistance. Then, the proposed measure to ensure the DPA-resistance could
be added.

Besides the security, the comparison of co-design configurations could be continued
in two directions. On the one hand, the effect of converting the addition and
subtraction in the hardware could be studied. On the other hand, other version of
multipliers could be implemented – such as the Horner architecture – to obtain more
contrasted trade-offs. On the application side, the implementation of the protocol
layer on a standard bus , such as a CAN bus,

51

Appendices

53

Appendix A

Elliptic curves algorithms

A.1 Simplified Weierstrass in affine coordinates
Algorithms taken from [10].

Algorithm 9 Addition
Input: P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2)
Output: R = P1 + P2 = (X3, Y3, Z3)
A← Y1 − Y2
B ← X1 −X2
C ← inverse(B)
D ← AC
E ← D2

X3 ← E −X1 −X2
Y3 ← D(X1 −X3)− Y1

Algorithm 10 Doubling
Input: P = (X1, Y1, Z1)
Output: R = 2P1 = (X3, Y3, Z3)
A← X2

1
B ← 3A
C ← A+ a
D ← 2Y1
E ← inverse(D)
F ← CE
X3 ← F 2 − 2X1
Y3 ← F (X1 −X3)− Y

55

A. Elliptic curves algorithms

A.2 Unified operation for Edwards Curves
Algorithm taken from [1].

Algorithm 11 Edwards Curves Addition/Doubling
Input: P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2)
Output: R = P1 + P2
A← Z1Z2
B ← A2

C ← X1X2
D ← Y1Y2
E ← dCD
F ← B − E
G← B + E
X3 ← [(X1 + Y1)(X2 + Y2)− C −D]AF
Y3 ← AG(D − C)
Z3 ← cFG = FG BSince c=1, according to the chosen simplification

56

Appendix B

Program timing measurement

#inc lude <iostream>
#inc lude <windows . h>
#inc lude <time . h>

us ing namespace std ;

i n t main ()
{

HANDLE hSe r i a l ;
DCB dcbSerialParams = {0} ;
char szBuf f [7 2] ;
DWORD dwBytesRead = 0 ;
c lock_t a , b , temp ;
szBuf f =
{3 , 0 ,
196 ,197 ,85 ,142 ,106 ,212 ,213 ,77 ,163 ,80 ,123 ,
16 ,128 ,228 ,160 ,243 ,20 ,109 ,86 ,177 ,158 ,11 ,181 ,144 ,
1 , 0 } ;

hS e r i a l = Crea teF i l e ("COM8" ,
GENERIC_READ | GENERIC_WRITE,
0 ,
0 ,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
0) ;
i f (hS e r i a l==INVALID_HANDLE_VALUE){

i f (GetLastError()==ERROR_FILE_NOT_FOUND)
{

std : : cout << "Doesn ’ t e x i s t \n " ;
}
std : : cout << "Other problem\n" ;

}

dcbSerialParams . DCBlength=s i z e o f (dcbSerialParams) ;
i f (! GetCommState (hSe r i a l , &dcbSerialParams))
{

57

B. Program timing measurement

cout << "Doesn ’ t get s t a t e \n " ;
}
dcbSeria lParams . BaudRate=CBR_9600 ;
dcbSeria lParams . ByteSize=8;
dcbSeria lParams . StopBits=ONESTOPBIT;
dcbSeria lParams . Par i ty=NOPARITY;
i f (! SetCommState (hSe r i a l , &dcbSerialParams)){

cout << "Doesn ’ t s e t s t a t e \n " ;
}

COMMTIMEOUTS timeouts ={0};
t imeouts . ReadIntervalTimeout=50;
t imeouts . ReadTotalTimeoutConstant=50;
t imeouts . ReadTotalTimeoutMult ipl ier =10;
t imeouts . WriteTotalTimeoutConstant=50;
t imeouts . WriteTotalTimeoutMult ip l ier =10;
i f (! SetCommTimeouts (hSe r i a l , &t imeouts))
{

cout << "Timeout problem\n " ;
}

//Send p r o j e c t i v e coo rd ina t e s
f o r (i n t i =0; i <72; i++)
{

temp=c lock () ;
i f (! Wr i teFi l e (hSe r i a l , &(szBuf f [i]) , 1 , &dwBytesRead , NULL))
{

cout << "Problem to wr i t e \n " ;
}
whi l e ((c l o ck ()−temp) <10);

}
cout << "Written\n " ;

whi l e (1) // Wait f o r a ’ . ’
{

i f (! ReadFile (hSe r i a l , &(szBuf f [0]) , 1 , &dwBytesRead , NULL))
{

cout << "Problem to read\n " ;
}
i f (s zBuf f [0]== ’ . ’)
{

a=c lock () ;
break ;

}
}

szBuf f [0]=0 ;

whi l e (1) // Wait f o r a ’ . ’
{

i f (! ReadFile (hSe r i a l , &(szBuf f [0]) , 1 , &dwBytesRead , NULL))
{

cout << "Problem to read\n " ;
}

58

i f (s zBuf f [0]== ’ . ’)
{

b=c lock () ;
break ;

}
}

cout << "CLOCKS :"<<(b−a)<<endl ;
cout << "CLOCK_PER_SEC :"<<CLOCKS_PER_SEC<<endl ;
cout << " Fin i shed " << endl ;

CloseHandle (hS e r i a l) ;

}

59

Appendix C

VHDL Code of the 8x8 module

In this appendix, we give the code for the 8-bit multiplier. The other modules
can be found on the attached CD. The 16-bit and 32-bit multipliers are not given
since their structure are very similar to the 8-bit one. The 192-bit is not given here
because the code is too long.

l i b r a r y IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use IEEE . std_logic_unsigned . a l l ;

e n t i t y coproc8x8 i s
Port (c l k : in STD_LOGIC;

r e s e t : in STD_LOGIC;
c on t r o l : in STD_LOGIC_VECTOR (7 downto 0) ;

data : in STD_LOGIC_VECTOR (15 downto 0) ;
r e s : out STD_LOGIC_VECTOR (15 downto 0)

) ;
end coproc8x8 ;

a r c h i t e c t u r e Behaviora l o f coproc8x8 i s

s i g n a l M1 : s td_log ic_vector (7 downto 0) ;
s i g n a l M2 : s td_log ic_vector (7 downto 0) ;
s i g n a l mul : s td_log ic_vector (15 downto 0) ;
s i g n a l s t a t e : s td_log ic_vector (3 downto 0) ;
s i g n a l next_state : s td_log ic_vector (3 downto 0) ;

begin

mul <= M1∗M2;

proce s s (c l k) begin

i f RISING_EDGE(c lk) then

i f r e s e t = ’1 ’ then
s tate<=X" 0 " ;

61

C. VHDL Code of the 8x8 module

next_state<=X" 0 " ;
e l s e

s ta te<=next_state ;
end i f ;

i f s t a t e=X"0 " then
i f c on t r o l (7)= ’1 ’ then

next_state<=X" 1 " ;
end i f ;

e l s i f s t a t e=X"1 " then
next_state <=X" 2 " ;
M1 <= data (7 downto 0) ;
M2 <= data (15 downto 8) ;

e l s i f s t a t e=X"2 " then
i f c on t r o l (6)= ’1 ’ then

next_state<=X" 3 " ;
end i f ;

e l s i f s t a t e=X"3 " then
res<=mul ;
next_state<=X" 0 " ;

end i f ;

end i f ;

end proce s s ;

end Behaviora l ;

62

Appendix D

Magma Scripts

D.1 Points on Edwards Curves
Given the x coordinate and d parameter of an Edwards curve, this script finds

the corresponding point if it exists.
X:= F in i t eF i e l d (2^192−2^64−1);
Z:= IntegerRing () ;
x:=X! 3 ;
d :=22;
y:=X! Sqrt ((1−x^2)/(1−d∗x ^2)) ;
y:=Z ! y ;
y : Hex ;

D.2 Scalar multiplications
Given a point P, the d parameter of an Edwards curve, a scalar nbr and a

number of iterations ite this code computes the answer of kite ∗ P . It is based on
the piece of code for the Point Addition on Edwards curves from Bernstein’s website
[1] and the Square-And-Multiply algorithm from Chaper 2
nbr :=0x3DCF46ED302128736C0844766B41273BEB74600FF5984564 ;
XF:= F in i t eF i e l d (2^192−2^64−1);
ZF:= IntegerRing () ;
d:=XF! 2 2 ;
c :=XF! 1 ;

X:=XF! 2 ;
Y:=XF!145856074246581849553882507518887366570983786224641840723;
Z:=XF! 1 ;

X1:=XF! 2 ;
Y1:=XF!145856074246581849553882507518887366570983786224641840723;
Z1:=XF! 1 ;

f o r i t e :=1 to 25000 by 1 do

63

D. Magma Scripts

f o r i :=190 to 0 by −1 do
i f IsOdd (Sh i f tR ight (nbr , i)) then

va l := i −1;
break i ;

end i f ;
end f o r ;

f o r i := va l to 0 by −1 do

R1:=X1 ; R2:=Y1 ; R3:=Z1 ;
R4:=X1 ; R5:=Y1 ; R6:=Z1 ;
R3:=R3∗R6 ;
R7:=R1+R2 ;
R8:=R4+R5 ;
R1:=R1∗R4 ;
R2:=R2∗R5 ;
R7:=R7∗R8 ;
R7:=R7−R1 ;
R7:=R7−R2 ;
R7:=R7∗R3 ;
R8:=R1∗R2 ;
R8:=d∗R8 ;
R2:=R2−R1 ;
R2:=R2∗R3 ;
R3:=R3^2;
R1:=R3−R8 ;
R3:=R3+R8 ;
R2:=R2∗R3 ;
R3:=R3∗R1 ;
R1:=R1∗R7 ;
R3:=c∗R3 ;
X1:=R1 ; Y1:=R2 ; Z1:=R3 ;

i f IsOdd (Sh i f tR ight (nbr , i)) then
R1:=X1 ; R2:=Y1 ; R3:=Z1 ;
R4:=X; R5:=Y; R6:=Z ;
R3:=R3∗R6 ;
R7:=R1+R2 ;
R8:=R4+R5 ;
R1:=R1∗R4 ;
R2:=R2∗R5 ;
R7:=R7∗R8 ;
R7:=R7−R1 ;
R7:=R7−R2 ;
R7:=R7∗R3 ;
R8:=R1∗R2 ;
R8:=d∗R8 ;
R2:=R2−R1 ;
R2:=R2∗R3 ;
R3:=R3^2;
R1:=R3−R8 ;
R3:=R3+R8 ;
R2:=R2∗R3 ;
R3:=R3∗R1 ;
R1:=R1∗R7 ;

64

D.2. Scalar multiplications

R3:=c∗R3 ;
X1:=R1 ; Y1:=R2 ; Z1:=R3 ;

end i f ;
end f o r ;

X:=XF!X1 ;
Y:=XF!Y1 ;
Z:=XF! Z1 ;

X1:=XF!X1 ;
Y1:=XF!Y1 ;
Z1:=XF! Z1 ;

end f o r ;

r e s :=ZF !X1 ;
r e s : Hex ;
r e s :=ZF !Y1 ;
r e s : Hex ;
r e s :=ZF ! Z1 ;
r e s : Hex ;

65

Appendix E

Data of Energy Consumption

Table E.1 make appear several figures for each co-design. The three first numbers
result from the average of 20 measures for the computation of a scalar multiplication
between a random point and the key 0x06. The key is intentionally short in order to
record a trace of a reasonable size with the oscilloscope. In the order, these three
first numbers are the average power, the peak power and the time taken for the
computation.

The fourth number represents the energy consumption for an average key i.e. 96
zeros and 96 ones, and 288 point additions in total. For the 192-bit version, the
energy consumption is obtained from a full computation which is not given here. For
all the other versions, one proceeds as follows :

1. Since the traces recorded involves the scan of all the bit which are equal to
zero and then three point addition (the key is 0x6), we make the assumption
that the scan of the zeros is negligible compared to the three point addition.
Such that, we divide the power consumption of the trace by three to find the
power consumption of a point addition.

2. We multiply the consumption of one point addition by 288 to obtain the energy
consumption of an average key.

The assumption which says the key scanning is negligible in comparison with the
three point additions makes an error of at most five percent. Indeed, the worst case
is the 32-bit version since it is the fastest implementation after the 192-bit version –
for which we do not use this method. And the trace for the 32-bit version teaches
us that the time taken to scan the key represents less than five percent of the total
time. Since, the power of the key scanning is in the average of the trace, we draw the
conclusion that the error on the energy consumption is also bounded by five percent.
And this error is acceptable since we only want to monitor a trend.

67

E. Data of Energy Consumption

Version Physical quantity Value
software Average 0.0920A*1.5V = 0.138W

Peak 0.0986A*1.5V = 0.148W
Time 0.3033s
Energy 4.02J

asm Average 0.0929A*1.5V=0.1394W
Peak 0.1004A*1.5V = 0.151W
Time 0.35s
Energy 4.68J

8x8_module Average 0.0888A*1.5V = 0.1332W
Peak 0.0969A*1.5V = 0.145W
Time 0.4271s
Energy 5.46J

16x16_module Average 0.0816A*1.5V=0.1224W
Peak 0.0864A*1.5V = 0.13W
Time 0.2193
Energy 2.58J

32x32_module Average 0.0902A*1.5V=0.1353W
Peak 0.0975A*1.5V = 0.146W
Time 0.1231s
Energy 1.6J

192x192_module Average 0.1195*1.5V=0.1793W
Peak 0.1591A*1.5V = 0.239W
Time 0.0101s
Energy 0.119J

Table E.1: Figures of Energy Consumption

68

Appendix F

C implementation

Due to length reasons, the code can be found on the attached CD.

69

Bibliography

[1] D. J. Bernstein. Edwards coordinates for elliptic curves.
http://cr.yp.to/newelliptic/newelliptic.html.

[2] D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves.
In ASIACRYPT, pages 29–50, 2007.

[3] J.-L. Beuchat and J.-M. Muller. Une famille d’algorithmes de multi-
plication modulaire. http://www.cipher.risk.tsukuba.ac.jp/ beuchat/Teach-
ing/uqac_multiplication_modulo_m.pdf.

[4] D. Buell, J. Davis, and G. Quan. Reconfigurable computing applied to problems
in communications security bibtex. In Military and Aerospace Programmable
Logic Devices, 2002.

[5] J.-S. Coron. Resistance against differential power analysis for elliptic curve
cryptosystems. In CHES, pages 292–302, 1999.

[6] H. M. Edwards. A normal form for elliptic curves. In Bulletin of the American
Mathematical Society, pages 393–422, 2007.

[7] B. Gierlichs and L. Batina. Power analysis on curve-based cryptography.
https://www.cosic.esat.kuleuven.be/bcrypt/lecture%20slides/gierlichs.pdf.

[8] Grishman. Trends in high-performance computer architecture.
http://cs.nyu.edu/courses/fall10/V22.0436-001/lecture18.html.

[9] C. A. Group. Magma calculator. http://magma.maths.usyd.edu.au/calc/.

[10] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptog-
raphy. Springer, 2004. ISBN-0: 387-95273-X.

[11] Y. Hu, S. Das, S. Trimberger, and L. He. Design, synthesis and evaluation of
heterogeneous fpga with mixed luts and macro-gates. In Proceedings of the 2007
IEEE/ACM international conference on Computer-aided design, ICCAD ’07,
pages 188–193. IEEE Press, 2007.

[12] E. II. Yearly report on algorithms and keysizes, june 2011.

[13] A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by auto-
matic computers. pages 193–194. Doklady Akad. Nauk SSSR, 1962.

71

Bibliography

[14] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman &
Hall/Crc Cryptography and Network Security Series). Chapman & Hall/CRC,
2007.

[15] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. pages 388–397.
Springer-Verlag, 1999.

[16] F. Koeune and F.-X. Standaert. Foundations of security analysis and design iii.
chapter A tutorial on physical security and side-channel attacks, pages 78–108.
Springer-Verlag, 2005.

[17] N. Kolbitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[18] M. Koschuch, J. Lechner, A. Weitzer, J. Großschadl, A. Szekely, S. Tillich, and
J. Wolkerstorfer. Hardware/software co-design of elliptic curve cryptography
on an 8051 microcontroller. In Proceedings of the 8th international conference
on Cryptographic Hardware and Embedded Systems, CHES’06, pages 430–444.
Springer-Verlag, 2006.

[19] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks : Revealing the
Secrets of Smart Cards. Springer, 2007. ISBN-10: 0-387-30857-1.

[20] M. Medwed. Template-based spa attacks on 32-bit ecdsa implementations.
Master’s thesis, Graz University of Technology, Austria, 2007.

[21] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., 1996.

[22] V. Miller. Use of elliptic cuves in cryptography. In CRYPTO 85’, advances in
cryptology, pages 417–426. Springer-Verlag, 1986.

[23] Morita Tech / AIST. Side-channel attack standard evaluation board sasebo.
http://www.morita-tech.co.jp/SASEBO/en/board/sasebo.html.

[24] J.-M. Muller, J.-L. Beuchat, T. Miyoshi, and E. Okamoto. Horner’s rule-based
multiplication over fp and fpn̂: A survey. International Journal of Electronics,
95(7):669–685, July 2008.

[25] National Institute of Standards and Technology. Fips pub 186-3: Digital
signature standard (dss). http://csrc.nist.gov/publications/drafts/fips_186-
3/Draft-FIPS-186-3%20_March2006. pdf, 2006.

[26] Oregano Systems. 8051 ip core. http://www.oreganosystems.at/?page_id=96.

[27] G. Quan, J. P. Davis, S. Devarkal, and D. A. Buell. High-level synthesis for
large bit-width multipliers on fpgas: a case study. In Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, pages 213–218. ACM, 2005.

72

Bibliography

[28] K. Sakiyama, E. De Mulder, B. Preneel, and I. Verbauwhede. Side-channel
resistant system-level design flow for public-key cryptography. In Great Lakes
Symposium on VLSI, pages 144–147. ACM, 2007.

[29] J.-M. Schmidt and M. Medwed. Fault attacks on the montgomery powering
ladder. In 13th Annual International Conference on Information Security and
Cryptology, Proceedings. Springer, 2010.

[30] J. H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
ISBN-0: 387-96203-4.

[31] F.-X. Standaert. Introduction to side-channel attacks. In Secure Integrated
Circuits and Systems, pages 27–44. Springer, 2009.

[32] T. Vigneswaran, B. Mukundhan, and P. Subbarami Reddy. A novel low power,
high speed 14 transistor cmos full adder cell with 50% improvement in threshold
loss problem. World Academy of Science, Engineering and Technology, 13:81–85,
2006.

[33] Wikipedia. Osi model. http://en.wikipedia.org/wiki/OSI_model.

73

	Preface
	Abstract
	List of Figures and Tables
	List of Abbreviations and Symbols
	Introduction
	Motivation
	Contribution
	Structure

	Elliptic Curve Cryptography
	Elliptic Curves
	Projective coordinates
	Edwards Curves
	Protocol
	Advantages of ECC
	Physical Attacks
	Conclusion

	Design Choices
	Arithmetic Field
	Elliptic Curve
	Processor
	Conclusion

	Software Implementation
	Structure and data
	Arithmetic Layer
	Elliptic-Curve Layer
	Protocol Layer
	Results of the implementation
	Conclusion

	Hardware Acceleration
	Overview
	Bottleneck Analysis
	Interface of communication
	Basic blocks: 8x8, 16x16, 32x32
	192-bits modular multiplication
	ASM optimization
	Testing
	Conclusion

	Security Assessment
	Experimental setup
	Point of attack
	Simple Power Analysis
	Differential Power Analysis
	Conclusion

	Comparison
	Execution time
	Area utilization
	Energy consumption
	Security

	Conclusion
	Elliptic curves algorithms
	Simplified Weierstrass in affine coordinates
	Unified operation for Edwards Curves

	Program timing measurement
	VHDL Code of the 8x8 module
	Magma Scripts
	Points on Edwards Curves
	Scalar multiplications

	Data of Energy Consumption
	C implementation
	Bibliography

