
Trivium

A Stream Cipher Construction Inspired by

Block Cipher Design Principles?

Christophe De Cannière1,2

1 IAIK Krypto Group, Graz University of Technology
Inffeldgasse 16A, A–8010 Graz, Austria

christophe.decanniere@iaik.tugraz.at
2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

Abstract. In this paper, we propose a new stream cipher construction
based on block cipher design principles. The main idea is to replace
the building blocks used in block ciphers by equivalent stream cipher
components. In order to illustrate this approach, we construct a very
simple synchronous stream cipher which provides a lot of flexibility for
hardware implementations, and seems to have a number of desirable
cryptographic properties.

1 Introduction

In the last few years, widely used stream ciphers have started to be systematically
replaced by block ciphers. An example is the A5/1 stream cipher used in the
GSM standard. Its successor, A5/3, is a block cipher. A similar shift took place
with wireless network standards. The security mechanism specified in the original
IEEE 802.11 standard (called ‘wired equivalent privacy’ or WEP) was based on
the stream cipher RC4; the newest standard, IEEE 802.11i, makes use of the
block cipher AES.

The declining popularity of stream ciphers can be explained by different fac-
tors. The first is the fact that the security of block ciphers seems to be better
understood. Over the last decades, cryptographers have developed a rather clear
vision of what the internal structure of a secure block cipher should look like.
This is much less the case for stream ciphers. Stream ciphers proposed in the
past have been based on very different principles, and many of them have shown
weaknesses. A second explanation is that efficiency, which has been the tradi-
tional motivation for choosing a stream cipher over a block cipher, has ceased
to be a decisive factor in many applications: not only is the cost of comput-
ing power rapidly decreasing, today’s block ciphers are also significantly more
efficient than their predecessors.

? The work described in this paper has been partly supported by the European Com-
mission under contract IST-2002-507932 (ECRYPT), by the Fund for Scientific Re-
search – Flanders (FWO), and by the Austrian Science Fund (FWF project P18138).

Still, as pointed out by the eSTREAM Stream Cipher Project, it seems that
stream ciphers could continue to play an important role in those applications
where high througput remains critical and/or where resources are very restricted.
This poses two challenges for the cryptographic community: first, restoring the
confidence in stream ciphers, e.g., by developing simple and reliable design cri-
teria; secondly, increasing the efficiency advantage of stream ciphers compared
to block ciphers.

In this paper, we try to explore both problems. The first part of the article
reviews some concepts which lie at the base of today’s block ciphers (Sect. 3), and
studies how these could be mapped to stream ciphers (Sects. 4–5). The design
criteria derived this way are then used as a guideline to construct a simple and
flexible hardware-oriented stream cipher in the second part (Sect. 6).

2 Security and Efficiency Considerations

Before devising a design strategy for a stream cipher, it is useful to first clearly
specify what we expect from it. Our aim in this paper is to design hardware-
oriented binary additive stream ciphers which are both efficient and secure. The
following sections briefly discuss what this implies.

2.1 Security

The additive stream cipher which we intend to construct takes as input a k-bit
secret key K and an n-bit IV. The cipher is then requested to generate up to
2d bits of key stream zt = SK(IV, t), 0 ≤ t < 2d, and a bitwise exclusive OR
of this key stream with the plaintext produces the ciphertext. The security of
this additive stream cipher is determined by the extent to which it mimics a
one-time pad, i.e., it should be hard for an adversary, who does not know the
key, to distinguish the key stream generated by the cipher from a truly random
sequence. In fact, we would like this to be as hard as we can possibly ask from
a cipher with given parameters k, n, and d. This leads to a criterion called
K-security [1], which can be formulated as follows:

Definition 1. An additive stream cipher is called K-secure if any attack against

this scheme would not have been significantly more difficult if the cipher had been

replaced by a set of 2k functions SK : {0, 1}n×{0, . . . , 2d−1} → {0, 1}, uniformly

selected from the set of all possible functions.

The definition assumes that the adversary has access to arbitrary amounts of
key stream, that he knows or can choose the a priory distribution of the secret
key, that he can impose relations between different secret keys, etc.

Attacks against stream ciphers can be classified into two categories, depend-
ing on what they intend to achieve:

– Key recovery attacks, which try to deduce information about the secret key
by observing the key stream.

– Distinguishing attacks, the goal of which is merely to detect that the key
stream bits are not completely unpredictable.

Owing to their weaker objective, distinguishing attacks are often much easier
to apply, and consequently harder to protect against. Features of the key stream
that can be exploited by such attacks include periodicity, dependencies between
bits at different positions, non-uniformity of distributions of bits or words, etc.
In this paper we will focus in particular on linear correlations, as it appeared
to be the weakest aspect in a number of recent stream cipher proposals such
as Sober-tw [2] and Snow 1.0 [3]. Our first design objective will be to keep
the largest correlations below safe bounds. Other important properties, such as
a sufficiently long period, are only considered afterwards. Note that this ap-
proach differs from the way LFSR or T-function based schemes are constructed.
The latter are typically designed by maximizing the period first, and only then
imposing additional requirements.

2.2 Efficiency

In order for a stream cipher to be an attractive alternative to block ciphers, it
must be efficient. In this paper, we will be targeting hardware applications, and
a good measure for the efficiency of a stream cipher in this environment is the
number of key stream bits generated per cycle per gate.

There are two ways to obtain an efficient scheme according to this measure.
The first approach is illustrated by A5/1, and consists in minimizing the number
of gates. A5/1 is extremely compact in hardware, but it cannot generate more
than one bit per cycle. The other approach, which was chosen by the designers of
Panama [4], is to dramatically increase the number of bits per cycle. This allows
to reduce the clock frequency (and potentially also the power consumption)
at the cost of an increased gate count. As a result, Panama is not suited for
environments with very tight area constraints. Similarly, designs such as A5/1
will not perform very well in systems which require fast encryption at a low
clock frequency. One of the objectives of this paper is to design a flexible scheme
which performs reasonably well in both situations.

3 How Block Ciphers are Designed

As explained above, the first requirement we impose on the construction is that
it generates key streams without exploitable linear correlations. This problem is
very similar to the one faced by block cipher designers. Hence, it is natural to
attempt to borrow some of the techniques used in the block cipher world. The
ideas relevant to stream ciphers are briefly reviewed in the following sections.

3.1 Block Ciphers and Linear Characteristics

An important problem in the case of block ciphers is that of restricting linear
correlations between input and output bits in order to thwart linear cryptanal-
ysis [5]. More precisely, let P be any plaintext block and C the corresponding

x1 x2 x3 x4

S S S S

S S S S

y1 y2 y3 y4

M

Fig. 1. Three layers of a block cipher

ciphertext under a fixed secret key, then any linear combination of bits

ΓT

P · P + Γ T

C · C ,

where the column vectors ΓP and ΓC are called linear masks, should be as
balanced as possible. That is, the correlation

c = 2 ·
|{P | Γ T

P · P = Γ T

C · C}|

|{P}|
− 1

has to be close to 0 for any ΓP and ΓC . The well-established way to achieve
this consists in alternating two operations. The first splits blocks into smaller
words which are independently fed into nonlinear substitution boxes (S-boxes);
the second step recombines the outputs of the S-boxes in a linear way in order to
‘diffuse’ the nonlinearity. The result, called a substitution-permutation network,
is depicted in Fig. 1.

In order to estimate the strength of a block cipher against linear cryptanaly-
sis, one will typically compute bounds on the correlation of linear characteristics.
A linear characteristic describes a possible path over which a correlation might
propagate through the block cipher. It is a chain of linear masks, starting with a
plaintext mask and ending with a ciphertext mask, such that every two succes-
sive masks correspond to a nonzero correlation between consecutive intermediate
values in the cipher. The total correlation of the characteristic is then estimated
by multiplying the correlations of all separate steps (as dictated by the so-called
Piling-up Lemma).

3.2 Branch Number

Linear diffusion layers, which can be represented by a matrix multiplication
Y = M · X , do not by themselves contribute in reducing the correlation of a
characteristic. Clearly, it suffices to choose ΓX = MT · ΓY , where MT denotes
the transpose of M , in order to obtain perfectly correlating linear combinations
of X and Y :

ΓT

Y · Y = Γ T

Y · MX = (MTΓY)T · X = Γ T

X · X .

However, diffusion layers play an important indirect role by forcing characteris-
tics to take into account a large number of nonlinear S-boxes in the neighboring
layers (called active S-boxes). A useful metric in this context is the branch num-

ber of M .

Definition 2. The branch number of a linear transformation M is defined as

B = min
ΓY 6=0

[wh(ΓY) + wh(MTΓY)] ,

where wh(Γ) represents the number of nonzero words in the linear mask Γ .

The definition above implies that any linear characteristic traversing the struc-
ture shown in Fig. 1 activates at least B S-boxes. The total number of active
S-boxes throughout the cipher multiplied by the maximal correlation over a
single S-box gives an upper bound for the correlation of the characteristic.

The straightforward way to minimize this upper bound is to maximize the
branch number B. It is easy to see that B cannot exceed m + 1, with m the
number of words per block. Matrices M that satisfy this bound (known as the
Singleton bound) can be derived from the generator matrices of maximum dis-
tance separable (MDS) block codes.

Large MDS matrices are expensive to implement, though. Therefore, it is
often more efficient to use smaller matrices, with a relatively low branch number,
and to connect them in such a way that linear patterns with a small number
of active S-boxes cannot be chained together to cover the complete cipher. This
was the approach taken by the designers of Rijndael [6].

4 From Blocks to Streams

In this section, we try to adapt the concepts described above to a system where
the data is not processed in blocks, but rather as a stream.

Since data enters the system one word at a time, each layer of S-boxes in
Fig. 1 can be replaced by a single S-box which substitutes individual words
as they arrive. A general mth-order linear filter can take over the task of the
diffusion matrix. The new system is represented in Fig. 2, where D denotes the
delay operator (usually written as z−1 in signal processing literature), and f and
g are linear functions.

4.1 Polynomial Notation

Before analyzing the properties of this construction, we introduce some nota-
tions. First, we adopt the common convention to represent streams of words
x0, x1, x2, . . . as polynomials with coefficients in the finite field:

x(D) = x0 + x1D + x2D
2 +

. . . , x4, x3 S D D D D S y3, y2, . . .

f

g

Fig. 2. Stream equivalent of Fig. 1

. . . , 0, 0, 1 0 0 1 0 y

Fig. 3. A 4th-order linear filter

The rationale for this representation is that it simplifies the expression for the
input/output relation of the linear filter, as shown in the following equation:

y(D) =
f(D)

g(D)
·
[

x(D) + x0(D)
]

+ y0(D) . (1)

The polynomials f and g describe the feedforward and feedback connections of
the filter. They can be written as

f(D) = Dm ·
(

fmD−m + · · · + f1D
−1 + 1

)

,

g(D) = 1 + g1D + g2D
2 + · · · + gmDm .

The Laurent polynomials x0 and y0 represent the influence of the initial state s0,
and are given by x0 = D−m ·

(

s0 · g mod Dm
)

and y0 = D−m ·
(

s0 · f mod Dm
)

.

Example 1. The 4th-order linear filter depicted in Fig. 3 is specified by the poly-
nomials f(D) = D4 · (D−2 +1) and g(D) = 1+D3 +D4. Suppose that the delay
elements are initialized as shown in the figure, i.e., s0(D) = D. Knowing s0, we
can compute x0(D) = D−3 and y0(D) = D−1. Finally, using (1), we find the
output stream corresponding to an input consisting, for example, of a single 1
followed by 0’s (i.e., x(D) = 1):

y(D) =
D−1 + D + D2 + D4

1 + D3 + D4
+ D−1

= D + D3 + D5 + D6 + D7 + D8 + D12 + D15 + D16 + D18 + . . .

4.2 Linear Correlations

In order to study correlations in a stream-oriented system we need a suitable way
to manipulate linear combinations of bits in a stream. It will prove convenient
to represent them as follows:

Tr
[

[γx(D−1) · x(D)]
0

]

.

The operator [·]0 returns the constant term of a polynomial, and Tr(·) denotes the
trace to GF(2).3 The coefficients of γx, called selection polynomial, specify which
words of x are involved in the linear combination. In order to simplify expressions
later on we also introduce the notation γ∗(D) = γ(D−1). The polynomial γ∗ is
called the reciprocal polynomial of γ.

As before, the correlation between x and y for a given pair of selection poly-
nomials is defined as

c = 2 ·
|{(x, s0) | Tr[[γ∗

x · x]
0
] = Tr[[γ∗

y · y]
0
]}|

|{(x, s0)}|
− 1 ,

where deg x ≤ max(deg γx, deg γy).

4.3 Propagation of Selection Polynomials

Let us now analyze how correlations propagate through the linear filter. For each
selection polynomial γx at the input, we would like to determine a polynomial
γy at the output (if it exists) such that the corresponding linear combinations
are perfectly correlated, i.e.,

Tr[[γ∗
x · x]

0
] = Tr[[γ∗

y · y]
0
], ∀x, s0 .

If this equation is satisfied, then this will still be the case after replacing x by
x′ = x+x0 and y by y′ = y+y0, since x0 and y0 only consist of negative powers,
none of which can be selected by γx or γy. Substituting (1), we find

Tr[[γ∗
x · x′]

0
] = Tr[[γ∗

y · f/g · x′]
0
], ∀x, s0 ,

which implies that γ∗
x = γ∗

y ·f/g. In order to get rid of negative powers, we define
f? = Dm · f∗ and g? = Dm · g∗ (note the subtle difference between both stars),
and obtain the equivalent relation

γy = g?/f? · γx . (2)

Note that neither of the selection polynomials γx and γy can have an infinite
number of nonzero coefficients (if it were the case, the linear combinations would
be undefined). Hence, they have to be of the form

γx = q · f?/ gcd(f?, g?) and γy = q · g?/ gcd(f?, g?) , (3)

with q(D) an arbitrary polynomial.

3 The trace from GF (2n) to GF (2) is defined as Tr(a) = a + a2 + a4 + · · · + a2
n−1

.

Example 2. For the linear filter in Fig. 3, we have that f ?(D) = 1 + D2 and
g?(D) = D4 · (D−4 + D−3 + 1). In this case, f? and g? are coprime, i.e.,
gcd(f?, g?) = 1. If we arbitrarily choose q(D) = 1 + D, we obtain a pair of
selection polynomials

γx(D) = 1 + D + D2 + D3 and γy(D) = 1 + D2 + D4 + D5 .

By construction, the corresponding linear combinations of input and output bits
satisfy the relation

Tr(x0 + x1 + x2 + x3) = Tr(y0 + y2 + y4 + y5), ∀x, s0 .

4.4 Branch Number

The purpose of the linear filter, just as the diffusion layer of a block cipher,
will be to force linear characteristics to pass through as many active S-boxes as
possible. Hence, it makes sense to define a branch number here as well.

Definition 3. The branch number of a linear filter specified by the polynomials

f and g is defined as

B = min
γx 6=0

[wh(γx) + wh(g
?/f? · γx)]

= min
q 6=0

[wh(q · f?/ gcd(f?, g?)) + wh(q · g?/ gcd(f?, g?))] ,

where wh(γ) represents the number of nonzero coefficients in the selection poly-

nomial γ.

From this definition we immediately obtain the following upper bound on the
branch number

B ≤ wh(f?) + wh(g?) ≤ 2 · (m + 1) . (4)

Filters for which this bound is attained can be derived from MDS convolutional
(2, 1, m)-codes [7]. For example, one can verify that the 4th-order linear filter
over GF(28) with

f(D) = D4 ·
(

02xD−4 + D−3 + D−2 + 02xD−1 + 1
)

,

g(D) = 1 + 03xD + 03xD2 + D3 + D4 ,

has a branch number of 10. Note that this example uses the same field polynomial
as Rijndael, i.e., x8 + x4 + x3 + x + 1.

5 Constructing a Key Stream Generator

In the previous section, we introduced S-boxes and linear filters as building
blocks, and presented some tools to analyze how they interact. Our next task is to
determine how these components can be combined into a key stream generator.
Again, block ciphers will serve as a source of inspiration.

5.1 Basic Construction

A well-known way to construct a key stream generator from a block cipher is to
use the cipher in output feedback (OFB) mode. This mode of operation takes
as input an initial data block (called initial value or IV), passes it through the
block cipher, and feeds the result back to the input. This process is iterated and
the consecutive values of the data block are used as key stream. We recall that
the block cipher itself typically consists of a sequence of rounds, each comprising
a layer of S-boxes and a linear diffusion transformation.

By taking the very same approach, but this time using the stream cipher
components presented in Sect. 4, we obtain a construction which, in its simplest
form, might look like Fig. 4(a). The figure represents a key stream generator

S

S

z

(a)

S

S

z

(b)

Fig. 4. Two-round key stream generators

consisting of two ‘rounds’, where each round consists of an S-box followed by a
very simple linear filter. Data words traverse the structure in clockwise direction,
and the output of the second round, which also serves as key stream, is fed back
to the input of the first round.

While the scheme proposed above has some interesting structural similarities
with a block cipher in OFB mode, there are important differences as well. The
most fundamental difference comes from the fact that linear filters, as opposed
to diffusion matrices, have an internal state. Hence if the algorithm manages to
keep this state (or at least parts of it) secret, then this eliminates the need for a
separate key addition layer (another important block cipher component, which
we have tacitly ignored so far).

5.2 Analysis of Linear Characteristics

As stated before, the primary goal in this paper is to construct a scheme which
generates a stream of seemingly uncorrelated bits. More specifically, we would
like the adversary to be unable to detect any correlation between linear combi-
nations of bits at different positions in the key stream. In the following sections,
we will see that the study of linear characteristics provides some guidance on
how to design the components of our scheme in order to reduce the magnitude
of these correlations.

Applying the tools from Sect. 4 to the construction in Fig. 4(a), we can
easily derive some results on the existence of low-weight linear characteristics.
The term ‘low-weight’ in this context refers to a small number of active S-boxes.
Since we are interested in correlations which can be detected by an adversary,
we need both ends of the characteristic to be accessible from the key stream. In
order to construct such characteristics, we start with a selection polynomial γu

at the input of the first round, and analyze how it might propagate through the
cipher.

First, the characteristic needs to cross an S-box. The S-box preserves the po-
sitions of the non-zero coefficients of γu, but might modify their values. For now,
however, let us only consider characteristics for which the values are preserved
as well. Under this assumption and using (2), we can compute the selection
polynomials γv and γw at the input and the output of the second round:

γv = g?
1/f?

1 · γu and γw = g?
2/f?

2 · γv .

Since all three polynomials γu, γv , and γw need to be finite, we have that

γu = q · f?
1 f?

2 /d , γv = q · g?
1f?

2 /d , and γw = q · g?
1g?

2/d ,

with d = gcd(f?
1
f?
2
, g?

1
f?
2
, g?

1
g?
2
) and q an arbitrary polynomial. Note that since

both γu and γw select bits from the key stream z, they can be combined into a
single polynomial γz = γu + γw.

The number of S-boxes activated by a characteristic of this form is given by
W = wh(γu) + wh(γv). The minimum number of active S-boxes over this set of
characteristics can be computed with the formula

Wmin = min
q 6=0

[wh(q · f?
1
f?
2
/d) + wh(q · g?

1
f?
2
/d)] ,

from which we derive that

Wmin ≤ wh(f?
1
f?
2
) + wh(g?

1
f?
2
) ≤ wh(f?

1
) · wh(f?

2
) + wh(g

?
1
) · wh(f

?
2
) .

Applying this bound to the specific example of Fig. 4(a), where wh(f
?
i) =

wh(g?
i) = 2, we conclude that there will always exist characteristics with at most

8 active S-boxes, no matter where the taps of the linear filters are positioned.

5.3 An Improvement

We will now show that this bound can potentially be doubled by making the
small modification shown in Fig. 4(b). This time, each non-zero coefficient in
the selection polynomial at the output of the key stream generator needs to
propagate to both the upper and the lower part of the scheme. By constructing
linear characteristics in the same way as before, we obtain the following selection
polynomials:

γu = q ·
f?
1
f?
2

+ f?
1
g?
2

d
, γv = q ·

f?
1
f?
2

+ g?
1
f?
2

d
, and γz = q ·

f?
1
f?
2

+ g?
1
g?
2

d
,

with d = gcd(f?
1
f?
2

+ f?
1
g?
2
, f?

1
f?
2

+ g?
1
f?
2
, f?

1
f?
2

+ g?
1
g?
2
). The new upper bounds

on the minimum number of active S-boxes are given by

Wmin ≤ wh(f
?
1
f?
2

+ f?
1
g?
2
) + wh(f?

1
f?
2

+ g?
1
f?
2
)

≤ 2 · wh(f?
1) · wh(f?

2) + wh(f
?
1) · wh(g

?
2) + wh(g?

1) · wh(f?
2) ,

or, in the case of Fig. 4(b), Wmin ≤ 16. In general, if we consider extensions of
this scheme with r rounds and wh(f

?
i) = wh(g

?
i) = w, then the bound takes the

form:

Wmin ≤ r2 · wr . (5)

This result suggests that it might not be necessary to use a large number of
rounds, or complicated linear filters, to ensure that the number of active S-
boxes in all characteristics is sufficiently large. For example, if we take w = 2 as
before, but add one more round, the bound jumps to 72.

Of course, since the bound we just derived is an upper bound, the minimal
number of active S-boxes might as well be much smaller. First, some of the
product terms in f?

1
f?
2

+ f?
1
g?
2

or f?
1
f?
2

+ g?
1
f?
2

might cancel out, or there might
exist a q 6= d for which wh(γu) + wh(γv) suddenly drops. These cases are rather
easy to detect, though, and can be avoided during the design. A more important
problem is that we have limited ourselves to a special set of characteristics,
which might not necessarily include the one with the minimal number of active
S-boxes. However, if the feedback and feedforward functions are sparse, and the
linear filters sufficiently large, then the bound is increasingly likely to be tight.
On the other hand, if the state of the generator is sufficiently small, then we can
perform an efficient search for the lowest-weight characteristic without making
any additional assumption.

This last approach allows to show, for example, that the smallest instance of
the scheme in Fig. 4(b) for which the bound of 16 is actually attained, consists
of two 11th-order linear filters with

f?
1 (D) = 1 + D10 , g?

1(D) = D11 · (D−3 + 1) ,

f?
2
(D) = 1 + D9 , g?

2
(D) = D11 · (D−8 + 1) .

5.4 Linear Characteristics and Correlations

In the sections above, we have tried to increase the number of active S-boxes
of linear characteristics. We now briefly discuss how this number affects the
correlation of key stream bits. This problem is treated in several papers in the
context of block ciphers (see, e.g., [6]).

We start with the observation that the minimum number of active S-boxes
Wmin imposes a bound on the correlation cc of a linear characteristic:

c2

c ≤ (c2

s)
Wmin

,

where cs is the largest correlation (in absolute value) between the input and the
output values of the S-box. The squares c2

c and c2
s are often referred to as linear

probability, or also correlation potential. The inverse of this quantity is a good
measure for the amount of data that the attacker needs to observe in order to
detect a correlation.

What makes the analysis more complicated, however, is that many linear
characteristics can contribute to the correlation of the same combination of key
stream bits. This occurs in particular when the scheme operates on words, in
which case there are typically many possible choices for the coefficients of the
intermediate selection polynomials describing the characteristic (this effect is
called clustering). The different contributions add up or cancel out, depending
on the signs of cc. If we now assume that these signs are randomly distributed,
then we can use the approach of [6, Appendix B] to derive a bound on the
expected correlation potential of the key stream bits:

E(c2) ≤ (c2

s)
Wmin−n

. (6)

The parameter n in this inequality represents the number of degrees of freedom
in the choice for the coefficients of the intermediate selection polynomials.

For the characteristics propagating through the construction presented in
Sect. 5.3, one will find, in non-degenerate cases, that the values of n = r · (r−1) ·
wr−1 non-zero coefficients can be chosen independently. Hence, for example, if
we construct a scheme with w = 2 and r = 3, and if we assume that it attains the
bound given in (5), then we expect the largest correlation potential to be at most
c2·48
s . Note that this bound is orders of magnitude higher than the contribution

of a single characteristic, which has a correlation potential of at most c2·72
s .

Remark 1. In order to derive (6), we replaced the signs of the contributing linear
characteristics by random variables. This is a natural approach in the case of
block ciphers, where the signs depend on the value of the secret key. In our case,
however, the signs are fixed for a particular scheme, and hence they might, for
some special designs, take on very peculiar values. This happens for example
when r = 2, w is even, and all non-zero coefficients of fi and gi equal 1 (as in
the example at the end of the previous section). In this case, all signs will be
positive, and we obtain a significantly worse bound:

c2 ≤ (c2

s)
Wmin−2·n

.

6 Trivium

In this final section, we present an experimental 80-bit key stream cipher based
on the approach outlined above. Because of space restrictions, we limit ourselves
to a very rough sketch of some basic design ideas behind the scheme. The com-
plete specifications of the cipher, which was submitted to the eSTREAM Stream
Cipher Project under the name Trivium, can be found at http://www.ecrypt.
eu.org/stream/ [8].

6.1 A Bit-Oriented Design

The main idea of Trivium’s design is to turn the general scheme of Sect. 5.3 into
a bit-oriented stream cipher. The first motivation is that bit-oriented schemes
are typically more compact in hardware. A second reason is that, by reducing the
word-size to a single bit, we may hope to get rid of the clustering phenomenon
which, as seen in the previous section, has a significant effect on the correlation.

Of course, if we simply apply the previous scheme to bits instead of words,
we run into the problem that the only two existing 1 × 1-bit S-boxes are both
linear. In order to solve this problem, we replace the S-boxes by a component
which, from the point of view of our correlation analysis, behaves in the same
way: an exclusive OR with an external stream of unrelated but biased random
bits. Assuming that these random bits equal 0 with probability (1 + cs)/2, we
will find as before that the output of this component correlates with the input
with correlation coefficient cs.

The introduction of this artificial 1× 1-bit S-box greatly simplifies the corre-
lation analysis, mainly because of the fact that the selection polynomial at the
output of an S-box is now uniquely determined by the input. As a consequence,
we neither need to make special assumptions about the values of the non-zero
coefficients, nor to consider the effect of clustering: the maximum correlation in
the key stream is simply given by the relation

cmax = cWmin

s . (7)

The obvious drawback, however, is that the construction now relies on exter-
nal streams of random bits, which have to be generated somehow. Trivium

attempts to solve this problem by interleaving three identical key stream gen-
erators, where each generator obtains streams of biased bits (with cs = 1/2) by
ANDing together state bits of the two other generators.

6.2 Specifying the Parameters

Let us now specify suitable parameters for each of those three identical ‘sub-
generators’. Our goal is to keep all parameters as small and simple as possible,
given a number of requirements.

The first requirement we impose is that the correlations in the key stream
do not exceed 2−40. Since each sub-generator will be fed with streams of bits

having correlation coefficient cs = 1/2, we can derive from (7) that a minimum
weight Wmin of at least 40 is needed. The smallest values of w and r for which
this requirement could be satisfied (with a fairly large margin, in fact) are w = 2
and r = 3. As an additional requirement, we would like the minimum weight to
reach the upper bound of (5) for the chosen values of w and r. In this case, this
translates to the condition Wmin = 72, which is fulfilled if wh(γu) + wh(γv) +
wh(γw) ≥ 72 for all q 6= 0, where

γu = q ·
f?
1
f?
2
f?
3

+ f?
1
f?
2
g?
3

+ f?
1
g?
2
g?
3

d
, γv = . . . , etc.

Although the preceding sections have almost exclusively focused on linear
correlations, other security properties such as periodicity remain important. Con-
trolling the period of the scheme is difficult because of the non-linear interaction
between the sub-generators, but we can try to decrease the probability of short
cycles by maximizing the periods of the individual sub-generators after turning
off the streams feeding their 1 × 1-bit S-boxes. The connection polynomial of
these (completely linear) generators is given by f ?

1
f?
2
f?
3

+g?
1
g?
2
g?
3
, and ideally, we

would like this polynomial to be primitive. Our choice of w prevents this, though:
for w = 2, the polynomial above is always divisible by (D + 1)3. Therefore, we
just require that the remaining factor is primitive, and rely on the initialization
of the state bits to avoid the few short cycles corresponding to the factor (D+1)3

(see [8]).
Finally, we also impose some efficiency requirements. The first is that state

bits of the sub-generators should not be used for at least 64/3 iterations, once
they have been modified. This will provide the final scheme with the flexibility
to generate up to 64 bits in parallel. Secondly, the length of the sub-generators
should be as short as possible and a multiple of 32.

We can now exhaustively run over all possible polynomials f ?
1
, . . . , g?

3
in order

to find combinations for which all previous requirements are fulfilled simultane-
ously. Surprisingly enough, it turns out that the solution is unique:

f?
1 (D) = 1 + D9 , g?

1(D) = D31 · (D−23 + 1) ,

f?
2
(D) = 1 + D5 , g?

2
(D) = D28 · (D−26 + 1) ,

f?
3
(D) = 1 + D15 , g?

3
(D) = D37 · (D−29 + 1) .

In order to construct the final cipher, we interleave three of these sub-generators
and interconnect them through AND-gates. Since the reasoning above does not
suggest which state bits to use as inputs of the AND-gates, we simply choose to
minimize the length of the wires. The resulting scheme is shown in Fig. 5. The 96
state bits s1, s4, s7, . . . , s286 belong to the first sub-generator, s2, s5, s8, . . . , s287

to the second one, etc.

6.3 Security and Efficiency Evaluation

The scheme presented above is currently being evaluated in the framework of
the eSTREAM Stream Cipher Project, and to conclude this paper we briefly
summarize the current status of the evaluation.

zi

s1

s
6
6

s 9
4

s162

s
1
7
8

s 2
4
3

s288

Fig. 5. Trivium

Table 1. Cryptanalytical results

Attack Time Data Reference

Linear distinguisher 2144 2144 [8]
Guess-and-determine attack 2195 288 [8]
Guess-and-determine attack 2135 288 [9]
Solving system of equations 2164 288 [10]

Exhaustive key search 280 80

The complexities of the different attacks discovered so far are listed Table 1.
The most efficient dedicated attack is a guess-and-determine attack presented by
S. Khazaei [9]. However, with a time complexity of 2135, it is still considerably
less efficient than a generic exhaustive key search.

The hardware efficiency of Trivium was independently evaluated by Gür-
kaynak et al. [11] and by Good et al. [12]. The first paper reports a 64-bit
implementation in 0.25 � m 5-metal CMOS technology with a throughput per
area ratio of 129Gbit/s · mm2, which is three times higher than for any other
eSTREAM candidate. The second paper presents a compact FPGA implemen-
tation with an estimated equivalent number of gates of 2682, making Trivium

the second most compact candidate after Grain.

References

1. Daemen, J.: Cipher and hash function design. Strategies based on linear and
differential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven (1995)

2. Hawkes, P., Rose, G.G.: Primitive specification and supporting documentation for
SOBER-tw submission to NESSIE. In: Proceedings of the First NESSIE Workshop,
NESSIE (2000)

3. Ekdahl, P., Johansson, T.: SNOW – A new stream cipher. In: Proceedings of the
First NESSIE Workshop, NESSIE (2000)

4. Daemen, J., Clapp, C.S.K.: Fast hashing and stream encryption with PANAMA.
In Vaudenay, S., ed.: Fast Software Encryption, FSE’98. Volume 1372 of Lecture
Notes in Computer Science., Springer-Verlag (1998) 60–74

5. Matsui, M.: Linear cryptanalysis method for DES cipher. In Helleseth, T., ed.:
Advances in Cryptology – EUROCRYPT’93. Volume 765 of Lecture Notes in Com-
puter Science., Springer-Verlag (1993) 386–397

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES — The Advanced Encryption
Standard. Springer-Verlag (2002)

7. Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes.
Applicable Algebra in Engineering, Communication and Computing 10 (1999) 15–
32

8. De Cannière, C., Preneel, B.: TRIVIUM — Specifications. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/030 (2005) http://www.ecrypt.eu.org/

stream.
9. Khazaei, S.: Re: A reformulation of TRIVIUM. Posted on the eSTREAM Forum

(2006) http://www.ecrypt.eu.org/stream/phorum/read.php?1,448.
10. Raddum, H.: Cryptanalytic results on TRIVIUM. eSTREAM, ECRYPT Stream

Cipher Project, Report 2006/039 (2006) http://www.ecrypt.eu.org/stream.
11. Gürkaynak, F.K., Luethi, P., Bernold, N., Blattmann, R., Goode, V., Marghitola,

M., Kaeslin, H., Felber, N., Fichtner, W.: Hardware evaluation of eSTREAM can-
didates: Achterbahn, Grain, MICKEY, MOSQUITO, SFINKS, TRIVIUM, VEST,
ZK-Crypt. eSTREAM, ECRYPT Stream Cipher Project, Report 2006/015 (2006)
http://www.ecrypt.eu.org/stream.

12. Good, T., Chelton, W., Benaissa, M.: Review of stream cipher candidates from a
low resource hardware perspective. eSTREAM, ECRYPT Stream Cipher Project,
Report 2006/016 (2006) http://www.ecrypt.eu.org/stream.

