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Abstract. In this paper we introduce the notion of identity based en-
cryption with wildcards, or WIBE for short. This allows the encryption of
messages to multiple parties with common fields in their identity strings,
for example email groups in a corporate hierarchy. We propose a full se-
curity notion and give efficient implementations meeting this notion in
the standard model and in the random oracle model.

1 Introduction

The concept of identity based cryptography was introduced by Shamir as early
as in 1984 [12]. However, it took nearly twenty years for an efficient identity
based encryption (IBE) scheme to be proposed. In 2000 and 2001 respectively
Sakai, Ohgishi and Kasahara [11] and Boneh and Franklin [5] proposed IBE
schemes based on elliptic curve pairings. Also, in 2001 Cocks proposed a system
based on the quadratic residuosity problem [7].

One of the main application areas proposed for IBE is that of email encryp-
tion. In this scenario, given an email address, one can encrypt a message to the
owner of the email address without needing to obtain an authentic copy of the
owner’s public key first. In order to decrypt the email the recipient must authen-
ticate itself to a trusted authority who generates a private key corresponding to
the email address used to encrypt the message.

Our work is motivated by the fact that many email addresses correspond
to groups of users rather than single individuals. Consider the scenario where
there is some kind of organisational hierarchy. Take as an example an organi-
sation called ECRYPT which is divided into virtual labs, AZTEC and STVL
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for example. In addition, these virtual labs are further subdivided into working
groups WG1, WG2 and WG3, and an administrative group ADMIN. Finally,
each working group may consist of many individual members. There are several
extensions of the IBE primitive to such a hierarchical setting (HIBE) [9, 8]. The
idea is that each level can issue keys to users on the level below. For example
the owner of the ECRYPT key can issue decryption keys for ECRYPT.AZTEC
and ECRYPT.STVL.

Suppose that we wish to send an email to all the members of the AZTEC.WG1
working group, which includes personal addresses ECRYPT.AZTEC.WG1.Nigel,
ECRYPT.AZTEC.WG1.Dario and ECRYPT.AZTEC.WG1.John. Given a stan-
dard HIBE one would have to encrypt the message to each user individually. To
address this limitation we introduce the concept of identity based encryption with

wildcards (WIBE). The way in which decryption keys are issued is exactly as in a
standard HIBE scheme; what differs is encryption. Our primitive allows the en-
crypter to replace any component of the recipient identity with a wildcard so that
any identity matching the pattern can decrypt. Denoting wildcards by *, in the
example above the encrypter would use the identity ECRYPT.AZTEC.WG1.*
to encrypt to all members of the AZTEC.WG1 group. To send a message to the
administrative members of all virtual labs, one can simply encrypt to identity
ECRYPT.*.ADMIN.*.

It is often suggested that identity strings should be appended with the date
so as to add timeliness to the message, and so try to mitigate the problems
associated with key revocation. Using our technique we can now encrypt to
a group of users, with a particular date, by encrypting to an identity of the
form ECRYPT.AZTEC.WG1.*.22Oct2006 for example. Thus any individual in
ECRYPT.AZTEC.WG1 in possession of a decryption key for 22nd October 2006
will be able to decrypt.

Our paper proceeds as follows. In the next section we give an overview of
existing material that we will build upon. We formally introduce our new prim-
itive and describe an appropriate security model in Section 3. In Section 4 we
describe a generic construction that realises a WIBE from any HIBE. The con-
struction is very simple, yet unsatisfactory as it requires secret keys whose size
is exponential in the number of levels of the underlying HIBE.

In Section 5 we turn to the problem of constructing a WIBE scheme with
polynomial-size (with respect to all relevant parameters) ciphertexts and keys.
We present an efficient WIBE scheme based on Waters’ HIBE scheme [13], and
prove its security by reducing to the security of Waters’ HIBE scheme. The proof,
just like that of Waters [13], is in the standard model. In the full version of this
paper [1] we give two more efficient constructions, based on the Boneh-Boyen [3]
and the Boneh-Boyen-Goh [4] HIBE schemes, and provide security proofs in
the random oracle model [2]. We compare the efficiency and security of all our
schemes in Section 6, and we also sketch how chosen-ciphertext security can be
achieved by adapting the technique of Canetti et al. [6].
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2 Basic Definitions

In this section we introduce some notation, computational problems and basic
primitives that we will use throughout the rest of the paper. Let N = {0, 1, . . .}
be the set of natural numbers. Let ε be the empty string. If n ∈ N, then {0, 1}n

denotes the set of n-bit strings, and {0, 1}∗ is the set of all bit strings. More
generally, if S is a set, then Sn is the set of n-tuples of elements of S. If S is

finite, then x
$

← S denotes the assignment to x of an element chosen uniformly at
random from S. If A is an algorithm, then y ← A(x) denotes the assignment to

y of the output of A on input x, and if A is randomised, then y
$

← A(x) denotes
that the output of an execution of A(x) with fresh coins is assigned to y.

The decisional bilinear Diffie-Hellman assumption. Let G, GT be mul-
tiplicative groups of prime order p with an admissible map ê : G × G → GT.
By admissible we mean that the map is bilinear, non-degenerate and efficiently
computable. Bilinearity means that for all a, b ∈ Zp and all g ∈ G we have
ê(ga, gb) = ê(g, g)ab. By non-degenerate we mean that ê(g, g) = 1 if and only if
g = 1.

In such a setting we can define a number of computational problems. We
shall be interested in the following problem, called the bilinear decisional Diffie-
Hellman (BDDH) problem: For a generator g ∈ G, given

g , A = ga , B = gb , C = gc and Z = ê(g, g)z,

the problem is to determine whether Z = ê(g, g)abc for hidden values of a, b, c and
z. Formally, we define this via a game between an adversary A and a challenger

C. The challenger first generates random values a, b, c, z
$

← Zp and then it flips
a bit β. If β = 1 it passes A the tuple (g, A, B, C, ê(g, g)abc), if β = 0 it passes
the tuple (g, A, B, C, ê(g, g)z). The adversary A then must output its guess β′

for β. The adversary has advantage ǫ in solving the BDDH problem if

∣

∣Pr[A(g, A, B, C, ê(g, g)abc) = 1]− Pr[A(g, A, B, C, ê(g, g)z) = 1]
∣

∣ ≥ 2ǫ,

where the probabilities are over the choice of a, b, c, z and over the random coins
consumed by A.

Definition 1. The (t, ǫ) BDDH assumption holds if no t-time adversary has at

least ǫ advantage in the above game.

We note that throughout this paper we will assume that the time t of an adver-
sary includes its code size, in order to exclude trivial “lookup” adversaries.

Identity-based encryption schemes. An identity-based encryption (IBE)
scheme is a tuple of algorithms IBE = (Setup, KeyDer, Enc, Dec) providing the
following functionality. The trusted authority runs Setup to generate a master
key pair (mpk ,msk). It publishes the master public key mpk and keeps the
master secret key msk private. When a user with identity ID wishes to become

part of the system, the trusted authority generates a user decryption key dID

$

←
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KeyDer(msk , ID), and sends this key over a secure and authenticated channel
to the user. To send an encrypted message m to the user with identity ID , the

sender computes the ciphertext C
$

← Enc(mpk , ID , m), which can be decrypted
by the user as m ← Dec(dID ,C ). We refer to [5] for details on the security
definitions for IBE schemes.

Hierarchical IBE schemes. In a hierarchical IBE (HIBE) scheme, users are
organised in a tree of depth L, with the root being the master trusted au-
thority. The identity of a user at level 0 ≤ ℓ ≤ L in the tree is given by
a vector ID = (ID1, . . . , IDℓ) ∈ ({0, 1}∗)ℓ. A HIBE scheme is a tuple of al-
gorithms HIBE = (Setup, KeyDer, Enc, Dec) providing the same functionality
as in an IBE scheme, except that a user ID = (ID1, . . . , IDℓ) at level ℓ can
use its own secret key dID to generate a secret key for any of its children

ID ′ = (ID1, . . . , IDℓ, IDℓ+1) via dID ′
$

← KeyDer(dID , IDℓ+1). Note that by iter-
atively applying the KeyDer algorithm, user ID can derive secret keys for any of
its descendants ID ′ = (ID1, . . . , IDℓ+δ), δ ≥ 0. We will occasionally use the over-

loaded notation dID ′
$

← KeyDer(dID , (IDℓ+1, . . . , IDℓ+δ)) to denote this process.
The secret key of the root identity at level 0 is dε = msk . Encryption and decryp-
tion are the same as for IBE, but with vectors as identities instead of ordinary
bit strings. For 1 ≤ i ≤ ℓ and I ⊆ {1, . . . , ℓ}, we will occasionally use the nota-
tions ID |≤ i to denote the vector (ID1, . . . , ID i), ID |> i to denote (ID i+1, . . . , ℓ),
and ID |I to denote (ID i1 , . . . , ID i|I|) where i1, . . . , i|I| are the elements of I in
increasing order. Also, if S ⊂ N, then we define S|≤ i = {j ∈ S : j ≤ i} and
S|> i = {j ∈ S : j > i}.

The security of a HIBE scheme is defined through the following game. In
a first phase, the adversary is given as input the master public key mpk of a

freshly generated key pair (mpk ,msk)
$

← Setup as input. In a chosen-plaintext
attack (IND-ID-CPA), the adversary is given access to a key derivation oracle

that on input of an identity ID = (ID1, . . . , IDℓ), returns the secret key dID

$

←
KeyDer(msk , ID) corresponding to identity ID . In a chosen-ciphertext attack
(IND-ID-CCA), the adversary is additionally given access to a decryption oracle
that for a given identity ID = (ID1, . . . , IDℓ) and a given ciphertext C returns
the decryption m← Dec(KeyDer(msk , ID),C ).

At the end of the first phase, the adversary outputs two equal-length chal-
lenge messages m

∗
0, m

∗
1 ∈ {0, 1}∗ and a challenge identity ID∗ = (ID∗

1, . . . , ID
∗
ℓ∗),

where 0 ≤ ℓ∗ ≤ L. The game chooses a random bit b
$

← {0, 1}∗, generates a

challenge ciphertext C ∗ $

← Enc(mpk , ID∗, m∗
b) and gives C ∗ as input to the ad-

versary for the second phase, during which it gets access to the same oracles as
during the first phase. The adversary wins the game if it outputs a bit b′ = b
without ever having queried the key derivation oracle on any ancestor identity
ID = (ID∗

1, . . . , ID
∗
ℓ ) of ID∗, ℓ ≤ ℓ∗, and, additionally, in the IND-ID-CCA case,

without ever having queried (ID∗,C ∗) to the decryption oracle.

Definition 2. A HIBE scheme is (t, qK, ǫ) IND-ID-CPA-secure if all t-time ad-

versaries making at most qK queries to the key derivation oracle have at most

advantage ǫ in winning the IND-ID-CPA game described above.
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Definition 3. A HIBE scheme is (t, qK, qD, ǫ) IND-ID-CCA-secure if all t-time

adversaries making at most qK queries to the key derivation oracle and at most

qD queries to the decryption oracle have at most advantage ǫ in winning the

IND-ID-CCA game described above.

3 Identity-Based Encryption with Wildcards

Syntax. Identity-based encryption with wildcards (WIBE) schemes are essen-
tially a generalisation of HIBE schemes where at the time of encryption, the
sender can decide to make the ciphertext decryptable not just by a single target
identity ID , but by a whole group of users whose identities match a certain pat-
tern. Such a pattern is described by a vector P = (P1, . . . , Pℓ) ∈ ({0, 1}∗∪{*})ℓ,
where * is a special wildcard symbol. We say that identity ID = (ID1, . . . , IDℓ′)
matches P , denoted ID ∈* P , if and only if ℓ′ ≤ ℓ and ∀ i = 1 . . . ℓ′: ID i = Pi

or Pi = *. Note that under this definition, any ancestor of a matching iden-
tity is also a matching identity. This is reasonable for our purposes because any
ancestor can derive the secret key of a matching descendant identity anyway.

More formally, a WIBE scheme is a tuple of algorithms WIBE = (Setup,
KeyDer, Enc, Dec) providing the following functionality. The root authority first

generates a master key pair (mpk ,msk)
$

← Setup. A user with identity ID =
(ID1, . . . , IDℓ) can use its own decryption key dID to derive a decryption key for

any user ID ′ = (ID1, . . . , IDℓ, IDℓ+1) on the level below by calling dID ′
$

←
KeyDer(dID , IDℓ+1). We will again use the overloaded notation KeyDer(dID ,
(IDℓ+1, . . . , IDℓ+δ)) to denote iterative key derivation for descendants. The se-
cret key of the root identity is dε = msk .

To create a ciphertext of message m ∈ {0, 1}∗ intended for all identities

matching pattern P = (P1, . . . , Pℓ), the sender computes C
$

← Enc(mpk , P, m).
Any of the intended recipients ID ∈* P can decrypt the ciphertext using its
own decryption key as m ← Dec(dID ,C ). Correctness requires that for all key
pairs (mpk ,msk) output by Setup, all messages m ∈ {0, 1}∗, all 0 ≤ ℓ ≤ L,
all patterns P ∈ ({0, 1}∗ ∪ {*})ℓ, and all identities ID ∈ ({0, 1}∗)ℓ′ such that
ID ∈* P , Dec( KeyDer(msk , ID) , Enc(mpk , P, m) ) = m with probability one.

Security. We define the security of WIBE schemes in a way that is very similar
to the case of HIBE schemes, but where the adversary chooses a challenge pattern
instead of an identity to which the challenge ciphertext will be encrypted. Of
course, the adversary is not able to query the key derivation oracle for any
identity that matches the challenge pattern, nor is it able to query the decryption
oracle with the challenge ciphertext and any identity that matches the challenge
pattern.

More specifically, security is defined through the following game with an ad-
versary. In the first phase, the adversary is run on input of the master public

key of a freshly generated key pair (mpk ,msk)
$

← Setup. In a chosen-plaintext
attack (IND-WID-CPA), the adversary is given access to a key derivation or-

acle that on input ID = (ID1, . . . , IDℓ) returns dID

$

← KeyDer(msk , ID). In
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a chosen-ciphertext attack (IND-WID-CCA), the adversary additionally has
access to a decryption oracle that on input a ciphertext C and an identity
ID = (ID1, . . . , IDℓ) returns m← Dec(KeyDer(msk , ID),C ).

At the end of the first phase, the adversary outputs two equal-length challenge
messages m

∗
0, m

∗
1 and a challenge pattern P ∗ = (P ∗

1 , . . . , P ∗
ℓ∗) where 0 ≤ ℓ∗ ≤ L.

The adversary is given a challenge ciphertext C ∗ $

← Enc(mpk , P ∗, m∗
b) for a

randomly chosen bit b, and is given access to the same oracles as during the first
phase of the attack. The second phase ends when the adversary outputs a bit b′.
The adversary is said to win the IND-WID-CPA game if b′ = b and if it never
queried the key derivation oracle for the keys of any identity that matches the
target pattern (i.e., any ID such that ID ∈* P ∗). Also, in a chosen-ciphertext
attack (IND-WID-CCA), the adversary cannot query the decryption oracle on
C ∗ with any matching identity ID ∈* P ∗.

Definition 4. A WIBE scheme is (t, qK, ǫ) IND-WID-CPA-secure if all t-time

adversaries making at most qK queries to the key derivation oracle have at most

advantage ǫ in winning the IND-WID-CPA game described above.

Definition 5. A WIBE scheme is (t, qK, qD, ǫ) IND-WID-CCA-secure if all t-
time adversaries making at most qK queries to the key derivation oracle and at

most qD queries to the decryption oracle have at most advantage ǫ in winning

the IND-WID-CCA game described above.

4 A Generic Construction

We first point out that a WIBE scheme can be constructed from any HIBE
scheme, albeit with a secret key size that is exponential in the depth of the
hierarchy tree. Let “*” be a dedicated bitstring that is not allowed to occur
as a user identity. Then the secret key of a user with identity (ID1, . . . , IDℓ)
in the WIBE scheme contains the HIBE secret keys of all patterns matching
this identity, i.e. the secret keys of all 2ℓ identities (ID ′

1, . . . , ID
′
ℓ) such that

ID ′
i = ID i or ID ′

i = “*” for all i = 1, . . . , ℓ. To encrypt to a pattern (P1, . . . , Pℓ),
one uses the HIBE scheme to encrypt to the identity obtained by replacing each
wildcard in the pattern with the “*” string, i.e. the identity (ID1, . . . , IDℓ) where
ID i = “*” if Pi = * and ID i = Pi otherwise. Decryption is done by selecting the
appropriate secret key from the list and using the decryption algorithm of the
HIBE scheme.

The efficiency of the WIBE scheme thus obtained is roughly the same as that
of the underlying HIBE scheme, except that the size of the secret key is 2ℓ times
that of a secret key in the underlying HIBE scheme. This may be acceptable
for some applications, but may not be for others. Moreover, from a theoretical
point of view, it is interesting to investigate whether WIBE schemes exist with
overhead polynomial in all parameters. We answer this question in the affirmative
here by presenting direct schemes with secret key size (and, unfortunately, also
ciphertext size) linear in ℓ.
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5 A Construction from Waters’ HIBE Scheme

5.1 Waters’ HIBE Scheme

In [13], Waters argued that his IBE scheme can easily be modified into a L-level
HIBE scheme as per [3]. Here we explicitly present this construction as it will
be useful in the understanding of our construction of a WIBE scheme.

Setup. The trusted authority chooses random generators g1 and g2 from G

and a random value α
$

← Zp. For i = 1, . . . ,L and j = 0, . . . , n, it chooses

group elements ui,j
$

← G where L is the maximum hierarchy depth and n is
the length of an identity string. Next, it computes h1 ← gα

1 and h2 ← gα
2 .

The master public key is mpk = (g1, g2, h1, u1,0, . . . , uL,n), the corresponding
master secret key is msk = h2.

Key Derivation. A user’s identity is given by a vector ID = (ID1, . . . , IDℓ)
where each ID i is a n-bit string, applying a collision-resistant hash function
if necessary. Let “j ∈ ID i” denote a variable j iterating over all bit positions
1 ≤ j ≤ n such that the j-th bit of ID i is one. Using this notation, for
i = 1, . . . ,L, we define the function

Fi(ID i) = ui,0

∏

j∈ID
ui,j

where the ui,j are the elements in the master public key. To compute the
decryption key for identity ID from the master secret key, first random values

r1, . . . , rℓ
$

← Zp are chosen, then the private key dID is constructed as

(a0, a1, . . . , aℓ) =

(

h2

ℓ
∏

i=1

Fi(ID i)
ri , gr1

1 , . . . , grℓ

1

)

.

A secret key for identity ID = (ID1, . . . , IDℓ) can be computed by its parent
with identity ID |≤ ℓ−1 as follows. Let dID|≤ ℓ−1

= (a0, a1, . . . , aℓ−1). The

parent chooses rℓ
$

← Zp and outputs

dID = (a0 · Fi(ID i)
rℓ , a1, . . . , aℓ−1 , grℓ

1 ) .

Encryption. To encrypt a message m ∈ GT for identity ID = (ID1, . . . , IDℓ),

the sender chooses t
$

← Zp; the ciphertext C = (C1,C2,C3) is computed as

C1 ← gt
1 , C2 ←

(

C2,i = Fi(ID i)
t
)

i=1,...,ℓ
, C3 ← m · ê(h1, g2)

t .

Decryption. If the receiver is the root authority (i.e., the empty identity ID =
ε) holding the master key msk = h2, then he can recover the message by com-
puting C3/ê(C1, h2). Any other receiver with identity ID = (ID1, . . . , IDℓ)
and decryption key dID = (a0, a1, . . . , aℓ) decrypts a ciphertext C = (C1,

C2,C3) as C3 ·
∏ℓ

i=1 ê (ai,C2,i) /ê (C1, a0).

Waters [13] informally states that the above HIBE scheme is IND-ID-CPA se-
cure in the sense that if there is an adversary with advantage ǫ against the HIBE
making qK private key extraction queries, then there is an algorithm solving the
BDDH problem with advantage ǫ′ = O((nqK)Lǫ).
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5.2 A Waters-based WIBE Scheme

We first introduce some additional notation. If P = (P1, . . . , Pℓ) is a pattern,
then let |P | = ℓ be the length of P , let W(P ) be the set containing all wildcard
indices in P , i.e. the indices 1 ≤ i ≤ ℓ such that Pi = *, and let W(P ) be the
complementary set containing all non-wildcard indices. Clearly W(P )∩W(P ) =
∅ and W(P )∪W(P ) = {1, . . . , ℓ}. We also extend the notations P |≤ i, P |> i and
P |I that we introduced for identity vectors to patterns in the natural way.

Let Wa -HIBE = (Setup, KeyDer, Enc, Dec) be the HIBE scheme described
in Section 5.1. From Wa -HIBE , we can build a WIBE scheme Wa -WIBE =
(Setup′, KeyDer′, Enc′, Dec′), where Setup′ and KeyDer′ are equal to those of the
Wa -HIBE scheme (i.e., Setup′ = Setup and KeyDer′ = KeyDer), and Enc′ and
Dec′ are as follows.

Encryption. To create a ciphertext of message m ∈ GT intended for all iden-

tities matching pattern P = (P1, . . . , Pℓ), the sender chooses t
$

← Zp and
outputs the ciphertext C = (P,C1,C2,C3,C4), where

C1 ← gt
1 C2 ← (C2,i = Fi(Pi)

t)
i∈W(P )

C3 ← m · ê(h1, g2)
t C4 ←

(

C4,i,j = ut
i,j

)

i∈W(P ), j=0,...,n

Decryption. If the receiver is the root authority (i.e., the empty identity ID =
ε) holding the master key msk = h2, then it can recover the message by com-
puting C3/ê(C1, h2). Any other receiver with identity ID = (ID1, . . . , IDℓ)
matching the pattern P to which the ciphertext was created (i.e., ID ∈* P )
can decrypt the ciphertext C = (P,C1,C2,C3,C4) by computing C ′

2 =
(

C ′
2,i

)

i=1,...,ℓ
as

C ′
2,i = Fi(ID i)

t ←

{

C2,i if i ∈W(P )

C4,i,0 ·
∏

j∈IDi
C4,i,j if i ∈W(P )

and by using his secret key to decrypt the ciphertext C ′ = (C1,C
′
2,C3) via

the Dec algorithm of the Wa -HIBE scheme.

Theorem 6. Let Wa -HIBE be the HIBE scheme in Section 5.1 and let L be

the maximum hierarchy depth. Let Wa -WIBE be the WIBE scheme derived from

Wa -HIBE as described in Section 5.2. If Wa -HIBE is (t, qK, ǫ) IND-ID-CPA-

secure then Wa -WIBE is (t′, q′K, ǫ′) IND-WID-CPA-secure where

t′ = t + texpLn(1 + qK) , q′K = qK , ǫ′ ≥ ǫ/2L

and texp is the time it takes to perform an exponentiation in G.

Proof. The proof of Theorem 6 is by contradiction. That is, we first assume
that there exists an adversary A that breaks the IND-WID-CPA-security of the
Wa -WIBE scheme and then we show how to efficiently build another adversary
B which uses A to break the security of the Wa -HIBE scheme.
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Let mpkH = (g1, g2, h1, u1,0, . . . , uL,n) be the master public key of the
Wa -HIBE scheme that adversary B receives as input for its first phase. The
idea of the proof is that B will guess upfront where in the challenge pattern
P ∗ the wildcards are going to be, and “project” the non-wildcard levels of the
identity tree of the WIBE scheme onto the first levels of the HIBE scheme. In
particular, B will reuse values ui,j from mpkH for the non-wildcard levels, and
will embed new values u′

i,j values of which B knows the discrete logarithms for
wildcard levels.

First, B guesses a random vector P̂ = (P̂1, . . . , P̂L)
$

← {ε, *}L. Define the
projection function π : {1, . . . ,L} → {0, . . . ,L} such that

π(i) = 0 if i ∈W(P̂ ) and π(i) = i−
∣

∣

∣
W(P̂ )|≤ i

∣

∣

∣
otherwise.

Intuitively, B will “project” identities at level i of the WIBE scheme onto level
π(i) of the HIBE scheme whenever π(i) 6= 0. Next, the adversary B runs adver-
sary A providing it as input for its first phase a public-key mpkW = (g1, g2, h1,
u′

1,0, . . . , u
′
L,n), where for all 1 ≤ i ≤ L and 0 ≤ j ≤ n, the elements u′

i,j are

generated as u′
i,j ← g

αi,j

1 where αi,j
$

← Zp if i ∈ W(P̂ ), and u′
i,j ← uπ(i),j

otherwise. Define functions F ′
i (ID

′
i) = u′

i,0

∏

j∈ID
′
i
u′

i,j. Notice that mpkA is dis-

tributed exactly as it would be if produced by the setup algorithm described in
Section 5.2.

During the first phase, B has to answer all the key derivation queries ID ′ =
(ID ′

1, . . . , ID
′
ℓ) that A is allowed to ask. For that, B first computes the cor-

responding identity on the HIBE tree ID = ID ′|W(P̂ ), which is the identity

obtained by removing from ID ′ all components at levels where P̂ contains a
wildcard. That is, the identity ID is obtained from ID ′ by projecting the com-
ponent at level i of the WIBE onto level π(i) of the HIBE if π(i) 6= 0. B then
queries its own key derivation oracle for the Wa -HIBE scheme on input ID to
get the key d = (a0, . . . , aπ(ℓ)). From this, it computes the key d ′ = (a′

0, . . . , a
′
ℓ)

as

a′
0 ← a0 ·

∏

i∈W(P̂ ) F ′
i (ID

′
i)

ri , a′
i ←

{

gri

1 if i ∈W(P̂ )

aπ(i) if i ∈W(P̂ )

where ri
$

← Zp for all i ∈ W(P̂ ). At the end of its first phase, A outputs
the challenge pattern P ∗ = (P ∗

1 , . . . , P ∗
ℓ∗) and challenge messages m

∗
0, m

∗
1. If

W(P ∗) 6= W(P̂ ) then B aborts. Otherwise, B outputs the corresponding HIBE
identity ID∗ = P ∗|W(P∗) together with challenge messages m

∗
0, m

∗
1. Let C ∗ =

(C ∗
1 ,C ∗

2 ,C ∗
3 ) be the challenge ciphertext that B receives in return from its chal-

lenger, meaning that C ∗ is an encryption of m
∗
b with respect to the identity ID∗,

where b is the secret bit chosen at random by the challenger. B sets C ′∗
1 ← C ∗

1 ,
C ′∗

2 ← C ∗
2 , C ′∗

3 ← C ∗
3 and C ′∗

4 ← (C ∗
1

αi,j )i∈W(P∗), j=0,...,n and sends to A the

ciphertext C ′∗ = (P ∗,C ′∗
1 ,C ′∗

2 ,C ′∗
3 ,C ′∗

4 ) as the input for its second phase. Dur-
ing the second phase, A is then allowed to issue more key derivation queries,
which are answered by B exactly as in the first phase. When A outputs a bit b′,
B outputs b′ and stops.
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In order to analyse the success probability of B, we first need to show that the
simulation it provides to A is correct. The secret key d ′ = (a′

0, . . . , a
′
ℓ) returned

for identity (ID ′
1, . . . , ID

′
ℓ) can be seen to be correctly distributed since if a′

i = gri

1

for 1 ≤ i ≤ ℓ then

a′
0 = h2 ·

∏

i∈W(P̂ ) Fπ(i)(ID
′
i)

ri ·
∏

i∈W(P̂ ) F ′
i (ID

′
i)

ri

= h2 ·
∏

i∈W(P̂ )

(

uπ(i),0

∏

j∈ID
′
i
uπ(i),j

)ri

·
∏

i∈W(P̂ )

F ′
i (ID

′
i)

ri

= h2 ·
∏

i∈W(P̂ )

(

u′
i,0

∏

j∈ID
′
i
u′

i,j

)ri

·
∏

i∈W(P̂ )

F ′
i (ID

′
i)

ri

= h2 ·
∏ℓ

i=1 F ′
i (ID

′
i)

ri

Moreover, the challenge ciphertext C ′∗ = (P ∗,C ′∗
1 ,C ′∗

2 ,C ′∗
3 ,C ′∗

4 ) sent to A can
be seen to be correctly formed when W(P ∗) = W(P̂ ) as follows. Consider the
ciphertext C ∗ = (C ∗

1 ,C ∗
2 ,C ∗

3 ) that B receives back from the challenger after
outputting (ID∗, m∗

0, m
∗
1) where ID∗ = P ∗|W(P∗). We know that, for unknown

values t ∈ Zp and b ∈ {0, 1}, C ∗
1 = gt, C ∗

3 = m
∗
b · ê(h1, g2)

t and

C ∗
2 =

(

C ∗
2,i = Fi(ID

∗
i )

t
)

i=1,...,π(ℓ∗)
=
(

C ′∗
2,i = F ′

i (P
∗
i )t
)

i∈W(P∗)
.

Since B sets C ′∗
1 = C ∗

1 , C ′∗
2 = C ∗

2 and C ′∗
3 = C ∗

3 , it follows that C ′∗
1 , C ′∗

2 and
C ′∗

3 are of the correct form. To show that C ∗
4 is correctly formed, notice that

u′
i,j = g

αi,j

1 for indices i ∈ W(P ∗) and j = 0, . . . , n. Thus, C ′∗
4,i,j = (C ∗

1 )αi,j =

g1
t αi,j = (g

αi,j

1 )t = u′
i,j

t
as required.

We also need to argue that B does not query its key derivation oracle on any
identities that are considered illegal in the IND-ID-CPA game when its guess for
W(P ∗) is correct. Illegal identities are the challenge identity ID∗ = P ∗|W(P∗)

or any ancestors of it, i.e. any ID∗|≤ ℓ for ℓ ≤ ℓ∗. Adversary B only makes
such queries when A queries its key derivation oracle on an identity ID ′ =
(ID ′

1, . . . , ID
′
ℓ′) such that ℓ′ ≤ ℓ∗ and ID ′

i = P ∗
i for all i ∈ W(P ∗)|≤ ℓ′ . By our

matching definition, this would mean that ID ′ ∈* P ∗, which is illegal in the
IND-WID-CPA game as well. Note that, whenever ℓ′ > ℓ∗, we always have that
|ID | > |ID∗| since W(P̂ )|> ℓ∗ = ∅.

To conclude the proof, we notice that the success probability of B is at least
that ofA when its guess for W(P ∗) is correct. Let ǫ be the probability thatA wins
the IND-WID-CPA game. Thus, it follows that the overall success probability
of B winning the IND-ID-CPA game is at least ǫ′ ≥ ǫ/2L.

Remark 7. The factor of 2L in the security reduction is not a major drawback
given the state of the art in HIBE constructions, which also lose this factor. In
addition, we only lose a factor of L2 when encrypting to patterns with a single
sequence of consecutive wildcards, for example (ID1, *, *, *, ID5) or (ID1, *, *).
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Scheme |mpk | |d | |C | Dec Assumption RO

Generic |mpkHIBE | 2L · |dHIBE | |CHIBE | DecHIBE
HIBE is

IND-ID-CPA
No

Wa -WIBE (n + 1)L + 3 L + 1 (n + 1)L + 2 L + 1 BDDH No

BB -WIBE 2L + 3 L + 1 2L + 2 L + 1 BDDH Yes

BBG -WIBE L + 4 L + 2 L + 3 2 L-BDHI Yes

Fig. 1. Efficiency and security comparison between the generic scheme of Section 4,
the Wa -WIBE scheme of Section 5.2, and the BB -WIBE and BBG -WIBE schemes
presented in the full version [1]. The schemes are compared in terms of master public
key size (|mpk |), user secret key size (|d |), ciphertext size (|C |), decryption time (Dec),
the security assumption under which the scheme is proved secure, and whether this
proof is in the random oracle model or not. (The generic construction does not introduce
any random oracles, but if the security proof of the HIBE scheme is in the random
oracle model, then the WIBE obviously inherits this property.) Values refer to the
underlying HIBE scheme for the generic scheme, and to the number of group elements
(|mpk |, |d |, |C |) or pairing computations (Dec) for the other schemes. L is the maximal
hierarchy depth and n is the bit length of an identity string. Figures are worst-case
values, usually occurring for identities at level L with all-wildcard ciphertexts. L-BDHI
refers to the decisional bilinear Diffie-Hellman inversion assumption [10, 3].

6 Alternative Constructions and Extensions

In the full version of this paper [1], we present two alternative WIBE imple-
mentations, namely the BB -WIBE scheme based on the Boneh-Boyen HIBE
scheme [3] and the BBG -WIBE scheme based on the Boneh-Boyen-Goh HIBE
scheme [4], respectively. We omit them here due to space restrictions. Both of
these schemes have security proofs in the standard model under a weaker security
notion that can be seen as a variant of selective-ID security with wildcards. Se-
curity under the full notion presented in Section 3 can be achieved in the random
oracle model [2] at the cost of losing a factor qL

H in the reduction, where qH is the
number of an adversary’s random oracle queries and L is the maximum depth of
the hierarchy. Both schemes have efficiency polynomial in all parameters, unlike
the generic construction of Section 4, and offer advantages over the Wa -WIBE
scheme in master public key length, ciphertext size and encryption/decryption
time. A comparison between all our schemes is provided in Fig. 1.

While the efficiency of our direct schemes is polynomial in all parameters,
we stress that their security degrades exponentially with the hierarchy depth
L. So just as is the case for the current state of the art in HIBE schemes, we
have to leave the construction of a WIBE scheme with polynomial efficiency and

security in all parameters as an open problem.
Also in the full version of the paper [1], we achieve chosen ciphertext secu-

rity by adapting the technique of Canetti, Halevi and Katz [6]. In particular, we
show that we may use a (2L+2)-level CPA-secure WIBE and a strongly unforge-
able signature scheme (SigGen, Sign, Verify) to construct an L-level CCA-secure
WIBE.
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