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Abstract. This paper presents a novel framework for the automatic
pipelining of AES S-boxes using composite field representations. The
framework is capable of finding positions to insert flip-flops in an almost
optimal way, resulting in S-boxes with an almost optimal critical path.
Our novel method is using memetic algorithms and is shown to be fast,
reliable and successful. We demonstrate our framework for composite
field S-boxes using a polynomial and a normal basis, respectively. Our
results prove that this method should be consulted when an optimal
solution is of interest. Besides experimental results with the new memetic
algorithms, we also discuss the ideal model of a circuit, which can be used
when assessing the quality of the obtained solutions. We emphasize that
this method can be used for any circuit of interest and not only for AES
S-boxes.
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1 Introduction

Implementations of cryptographic primitives present constant challenges in to-
day’s security applications. On the one side, embedded security relies on multi-
ple trade-offs in terms of constraints on area, timing, power and energy and at
the same time requires implementations to be secure against side-channel adver-
saries. On the other side, various high-speed implementations in high-bandwidth
servers aim at ever faster versions of algorithms without a substantial increase
in resources.

Considering block ciphers like AES that are commonly used for bulk en-
cryption applications, a clear preference is often given to the counter mode of
operation as it is parallelizable and hence suitable for high throughput, which
is required by applications such as VPN setup, IPSec, etc. It may appear that
pipelining and parallelism are the terms that do not go well with constrained
platforms but it is less certain where one should draw the line defining embedded
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security devices. For example, ARM has recently announced its next generation
ARM Cortex-A72 processor to be used for mobile phones that is based on the
64-bit ARM v8-A architecture. ARM claims that the new chip delivers as much
as 50 times the performance compared to processors from just five years ago
and that it is at the same time 75% more energy efficient than the previous
generation.

The situation is even more unclear with hardware modules. Basically, ap-
plications that require hardware implementations such as RFID tags and smart
cards are often developed for unique purposes and tailored towards a specific sce-
nario. It may be the case that high speed is of utmost importance even though
the application is embedded. It is fair to say that techniques that boost the per-
formance in hardware such as pipelining and parallelism remain important for
efficient implementations.

In this work we focus on pipelining and more precisely, we look for the optimal
way to put registers (flip-flops) such that we reduce the critical path substan-
tially. Naturally, at the same moment we do not want to pay for it too much with
area or power overhead. Our goal is to develop a novel framework that could
be useful for hardware designers and in general, implementers. To this end, we
use memetic algorithms as a known approach in the Evolutionary Computation
(EC) area. We demonstrate our approach on composite field S-boxes, because
they result in circuits with a high number of gates and a high number of unbal-
anced paths. We elaborate on our ideas and contributions in the remainder of
this paper.

Motivation and Contributions

The goal of this work is to derive a framework that is applicable to real-
world scenarios. The authors of [1] give a proof of concept where they succeed
in pipelining an AES S-box with an improved throughput as a result. However,
to come up with a generic and at the same time optimal strategy, significant
improvements in the choice of algorithm and the optimization function are nec-
essary. Therefore, the main difference with our work is that we use more powerful
search algorithm as well as improved evaluation mechanisms. Although maybe
at a first glance those differences do not seem important, they are crucial in the
transition from a proof of concept work that was not able to produce optimal
results, to our framework that produces much better results in a smaller amount
of time.

More specifically, our main contributions are:

1. Development of a new optimization algorithm that is able to produce correct
solutions with a high certainty. Since we use heuristics, we cannot guarantee
that all obtained solutions will be correct. Nevertheless, the experimental
results in this paper did not yield any incorrect solution.

2. Improvement of the evaluation process that enables one to obtain results
relatively fast. The evaluation process consists of testing whether all paths
have the same number of flip-flops.
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3. Extensive tests showing the suitability of our approach.
4. Building a whole system that accepts as an input the netlist and outputs a

ready to be simulated netlist with inserted flip-flops.
5. Pipelined S-boxes with an optimized critical path compared to related work.

Besides those main contributions, we have a few more things to report on.
Firstly, we have conducted all necessary experiments with several optimization
techniques to find the best one. Furthermore, we have developed a tool that
enables us to test a circuit in order to a priori determine what kind of results
are expected. For this purpose we experimented with several different represen-
tations of the problem, in order to find the optimal one. Next, we present a
framework that is capable to decompose a network (i.e. a circuit) into several
subnetworks. Finally, we introduce the notion of the Ideal Circuit Model that
helps us to evaluate the quality of our solutions. We give more details on all the
aspects of this work below.

The remainder of this paper is organized as follows. In Section 2, we give the
necessary information about AES and the methods for implementing S-boxes
in hardware. Furthermore, we give the basic circuit terminology that we follow
in this work. We continue in Section 3, where we present related work from
the cryptographic, the design automation and the evolutionary computation
perspective. In Section 4, we give an extensive description of our framework.
To justify the model we use, we also present several other options with their
advantages and drawbacks. Here, we also present the Ideal Circuit Model, an
abstraction that helps us to assess the quality of the obtained solutions. Section 5
gives results of our EC experiments as well as the results of the synthesis process.
Furthermore, we give a short discussion on the relevance of those results as well
as some guidelines for future work. Finally, in Section 6 we conclude this study.

2 Preliminaries

In this section, we give the necessary background information for following this
work. First, we define the network related terminology we use and then we
shortly describe the AES cipher.

2.1 Circuit Terminology

Retiming represents a technique that transforms the circuit by moving registers
from one location in the circuit to another in such a way that the functional
behavior of the circuit as a whole is preserved [2]. Retiming can optimize several
objectives [3]:

– minperiod - minimizes the clock frequency of a circuit,
– minarea - minimizes the number of registers in a circuit, and
– constrained minarea - minimizes the number of registers in a circuit subject

to a maximum constraint on the clock period.



4

Pipelining is a system design technique that increases the performance of a
system by partitioning a complex combinatorial circuit into a number of circuits.
The pipelined circuit has a reduced critical path and could be operated on a
higher working frequency [4]. Pipelining can be regarded as a special case of a
minperiod objective [2].

A piece of hardware that implements the functionality of a Boolean func-
tion is called a logic gate. A circuit (network) is a set of interconnected logic
gates. Networks are commonly described using netlists, which contain informa-
tion about the types of logic gates employed, as well as their interconnections.
Therefore, within a netlist logic gates can be perceived as network nodes.

When an output of a logic gate A, contained within a circuit, is connected to
an input of a logic gate B we say that the gate A drives (the input of) gate B.
Inputs of a circuit are inputs of logic gates within the circuit that are not driven
by any of the logic gates of the circuit. Outputs of a circuit are outputs of logic
gates that do not drive any of the gates of the circuit.

A path is a unique combination of nodes connecting a single input to a single
output. Each node in the path (logic gate) introduces a delay corresponding to
the time required for the signal to propagate from node inputs to node outputs.
The number of paths denotes the number of different possible paths through the
circuit from an input to an output. The delay of a path is equal to the sum of
the delays of all its nodes. The path with the largest delay is called the critical
path; for it limits the rate at which circuit-inputs may be changed (system clock
frequency).

2.2 Standard Cells and Delays

A standard-cell design approach is based on using pre-made logic gates – called
cells – that implement a variety of combinatorial and sequential functions. For
further information about standard cells and delays, we refer the readers to [5].

In an effort to have results that are possible to compare with those from
previous work, we use the same standard cell library, namely the UMC 0.13 µm
low-leakage (LL) standard cell library [6]. For versatility we provide results for
all operating conditions of this library, as well results for the UMC 0.13 µm
high-speed (HS) standard cell library.

2.3 AES Cipher

As already stated, the target for the pipelining in this work is the S-box as
used in the AES cipher. Furthermore, we experiment with both polynomial and
normal basis. In accordance with that, here we give the necessary details about
the AES cipher, and various ways of implementing the S-box. The AES cipher is
a symmetric 128-bit block cipher [7]. To obtain a ciphertext, the plaintext needs
to pass a number of round transformations. The number of rounds depends on
the length of the key and is 10 rounds for a 128-bit key, 12 rounds for a 192-
bit key and 14 rounds for a 256-bit key. Each round has a unique key that
is calculated from the initial key. The operations in the AES cipher are on a
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4×4 byte array, called the state. Those operations are AddRoundKey, SubBytes,
ShiftRows and MixColumns. All the rounds consist of the same set of operations,
except that there is an additional AddRoundKey operation before the first round,
and the last round does not have the MixColumns operation. With regards to the
whole AES cipher, there are a variety of objectives for the implementation. As
a result, there exist approaches that e.g. maximize the throughput [8], minimize
the circuitry [9] or minimize power consumption [10].

The nonlinear layer (SubBytes operation) of the AES cipher is the substitu-
tion layer realized with S-boxes. This SubBytes operation replaces each byte of
the input and involves an inversion in the Galois field GF (28). This calculation
is not easy and therefore there are several approaches to this problem. In the
rest of this paper, we only consider AES that has 10 rounds in order to simplify
the considerations. Since the S-box is a 8-input 8-output lookup table (LUT),
a memory to store the S-box would have a size of 256 bytes. To reduce the
circuitry, Rijmen suggested to calculate the inverse of the Galois field by using
subfield arithmetic [11]. This idea was further extended by work of Satoh et al.
who suggested to use the tower field approach [9]. Works of Canright [12] and
Mentens et al. [13] showed that the most compact solutions rely on composite
field arithmetic. For details about the polynomial and normal bases, we refer the
readers to [12,13]. For details about tower fields, we refer the readers to [14].

3 Related Work

In the next section, we briefly summarize several important works on hardware
implementations and design automation as well as on evolutionary computation
techniques for applications in cryptology. First, we list seminal works dealing
with the retiming problem. Leiserson and Saxe presented the retiming technique
that is able to minimize the area or maximize the clock frequency without chang-
ing the functionality of a circuit as a whole [2]. Furthermore, they showed that
the problem of determining a retimed circuit with a minimum number of regis-
ters is solvable in polynomial time. Maheshwari and Sapatnekar presented an ap-
proach for the minarea retiming problem that is able to handle large circuits [15].
Narendra and Rudell discuss implementation issues arising when implementing
retiming algorithms and they give a number of experimental results for circuits
of various sizes [3]. Münzner and Hemme presented an algorithm that converts
combinational circuits into pipelined data paths where the first step is to use
timing requirements to find parts of the circuit where the register placement is
possible. The second step utilizes a modified maxperiod algorithm to position a
minimal number of registers [16]. However, we note that this algorithm does not
guarantee to find the global optimum of flip-flops. For more information about
retiming, we refer the readers to [17].

Next, we present related works that concentrate on cryptographic hardware
implementations where the design choice is similar to ours. The focus is on imple-
mentations that use composite field arithmetic to boost compactness or speed.
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Satoh et al. were the first to take advantage of the composite field GF (((22)
2
)
2
)

for low area implementations, which results in the most compact S-box at the
time with a gate complexity of 5.4 kgates [9]. This paper has triggered many
related works looking into one or the other tower field approach.

Similarly, Wolkerstorfer et al. use arithmetic in GF ((24)
2
) to achieve an im-

plementation with a gate count comparable to the one presented by Satoh et al.
(5.7 kgates) [18]. An additional goal was to make the best out of reusing hard-
ware area for both encryption and decryption. Mentens et al. experiment with
the choice of polynomials and representations to optimize the S-box on compact-
ness for polynomial bases [13]. The main result proves that one can make better
choices with different irreducible polynomials and representations of elements in
this special type of tower field. Canright picked up on this work, applying the
ideas to normal bases [12]. Systematically exploring all the possibilities, he de-
duced the smallest S-box at the time, a result that held up for almost a decade.
Only recently Moradi et al. have published the most compact AES implementa-
tion of a size of only 2.4 kgates [19]. This result is obtained by focusing on AES
encryption and squeezing the area on all the design layers.

Macchetti and Bertoni [20] describe an ASIC implementation for the same

composite field F((24)
2
) as Wolkerstorfer et al., but looking into a different rep-

resentation. We mention here just a handful of the most influential papers, but
it is obvious that the plethora of implementation options of AES has contributed
to a huge amount of results that vary from exploiting one or the other design
alternative. Looking into high-speed implementations, Hodjat and Verbauwhede

describe an ASIC implementation for the same composite field GF ((24)
2
) as

Wolkerstorfer [21]. Their approach was to perform an area-throughput trade-off
by fully pipelining the architecture and also optimizing the key-schedule imple-
mentation. The same authors also consider a pipelined AES implementation on
an FPGA [22]. In [23] and [24], Boyar and Peralta presented a technique to
improve the implementation of the AES S-Box. Their result provides different
tradeoffs between the implementation area and the logic depth.

From the Evolutionary Computation perspective, we can find a number of
papers that explore various applications that could be of interest in cryptol-
ogy, the most prominent ones being the evolution of Boolean functions and S-
boxes [25–27]. However, here we list only a few works that have clear connections
with the problem we describe. Yagain and Vijayakrishna present a framework
for the retiming problem when considering DSP blocks [28]. They experiment
with the multi-objective genetic algorithm and report as a main advantage of
their approach a number of viable solutions instead of one.

Batina et al. conduct the first experiments in trying to evolve the AES S-box
in the form of a combinatorial circuit with the goal of increased throughput [1].
We point to this paper as a proof of concept, which is also our starting point and
we present a complete novel framework that can be used in real-world security
systems. However, we note that the results presented in that paper are worse
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than even those obtained by manually inserting flip-flops in the design phase as
given in Section 5.1.

4 The Optimization Framework

In this section, we start by defining an ideal circuit that can be pipelined into
circuits of the same size. In an ideal circuit, each part of the circuit in between
the pipelining stages has an equal delay. Furthermore, it is always possible to
divide the longest path of such a circuit into n+1 partitions of exactly the same
size where n is the number of flip-flop layers one adds.

As an example, consider a circuit that has a critical path equal to 1 000
ns. After inserting one layer of flip-flops on all necessary positions, the critical
path would equal 500 ns (we disregard the delay of flip-flops). Such ideal model
can help us when evaluating the quality of obtained solutions and guide us
towards the best possible (optimal) solution. Naturally, it is hard to expect that
a realistic circuit can be divided so perfectly. Therefore, we aim that the best
possible solution should be as close to the ideal solution as possible. Next, we
define the maximal number of flip-flops that can be added to a circuit.

Definition 1 The upper bound of the number of flip-flop layers is equal to the
number of cells that can be added to the shortest path connecting the input to the
output of the circuit.

4.1 The Choice of the Optimization Procedure

Similarly to the approach from [1], we regard this as an optimization problem:
pipelining of a combinatorial circuit in a way that minimizes the critical path
of a circuit while retaining its correctness, can be viewed as an optimization
problem.

To be able to run the optimization, we introduce the notion of a correct
solution.

Definition 2 A correct solution is represented by any circuit with flip-flops in
which there is the same number of flip-flops on every path connecting any input
to any output.

It is obvious that, to be able to pipeline the signal, there has to be at least
one flip-flop on each path; but for the solution to be correct, that number must
be the same for each path.

Since we established that we regard pipelining as an optimization problem,
next we discuss which algorithm to use. We regard this problem as a black box
scenario and therefore we assume no specific knowledge about the circuit. If
we start with an initial circuit that has no flip-flops and then randomly add
a certain number of flip-flops, it would be highly unrealistic to expect correct
solutions. Therefore, we decide to use heuristics. Heuristics are algorithms that
find good solutions on a large-size problem instance. Alternatively, heuristics
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can be defined as parts of an optimization algorithm. There, heuristics use the
information currently gathered by the algorithm to help decide which solution
candidate should be tested next or how the next solution can be produced [29].
Heuristic algorithms can be divided into specific heuristics and metaheuristics.
Specific heuristics are methods that are tailor-made to solve a specific problem
and therefore not appropriate here (since we are not aware of any tailor-made
heuristic algorithm for this problem). Metaheuristics are general-purpose algo-
rithms that can be applied to solve almost any optimization problem. To classify
metaheuristics, one can follow many criteria, but we divide it into single-solution
based metaheuristics and population based heuristics [30]. Single-solution based
metaheuristics manipulate and transform a single solution during the search as
in the case of algorithms like local search or simulated annealing. In contrast,
population based metaheuristics work on a population of solutions. On the basis
of the aforementioned classification, we decide to use population based meta-
heuristics, and more precisely evolutionary algorithms (EAs).

We experiment with three different evolutionary algorithms, namely, Genetic
Algorithms (GAs) [31], Evolution Strategy (ES) [32] and Genetic Annealing
(GAn) [33]. First, in order to conduct the experiments we need to define the
representation of the problem as well as the objective function. We use the same
objective function as in [1] for an easier comparison of the results. The goal is
the minimization of the following equation:

fitness = max delay time+ (1, 000 ∗ number invalid paths). (1)

In the previous equation, the second term acts as a penalty for solutions that
are not correct. In other words, we allow the incorrect (infeasible) solutions while
searching the solution space, but guide the search towards correct solutions. Here
we presume that the user specifies the target number of flip-flop layers n >= 1
to be inserted. Consequently, the number of invalid paths presents the number of
paths that contain a different number of flip-flops. After a solution is obtained,
we simulate it in the Synopsys tool as described in Section 5.4.

Next, we discuss how to encode the solution of the problem. We use the same
representation as in [1] where for a position with no flip-flops, we write 0 and
for a position with an inserted flip-flop, we write 1.

We developed a tool that translates a netlist into a bitstring representation
that can be used in the optimization algorithm. The same tool returns the solu-
tion back into the netlist format after the flip-flops are inserted. The tool itself is
written in the Java programming language, but the implementation details are
of secondary importance so they are not presented here.

However, the question is what is a possible insertion position? The most
general option is to allow an insertion of a flip-flop to every input of every cell in
the circuit, which we denote as input-based encoding. Thus, a potential solution
is represented as a string of bits with a length equal to the product of the number
of cells and their inputs. This length may be denoted with S. Since each bit may
be independently set to either one or zero, the size of the search space is 2S . We
have shown experimentally that in general only a very small fraction of this space
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represents correct solutions. Naturally, one can suggest to encode the solution
in a way where each cell represents one possible insertion position. Therefore,
in this kind of encoding we do not put flip-flops on each input of a cell, but on
the output of a cell (output-based encoding). In this way we are able to reduce
the solution length and size of the search space significantly. However, this also
results in the fact that some correct solutions, which can be obtained with the
first encoding, cannot be represented using the second one.

4.2 Genetic Algorithms

Genetic algorithms (GAs) are probabilistic algorithms whose search methods
model some natural phenomena: genetic inheritance and survival of the fittest [30,
31]. GAs are a subclass of evolutionary algorithms where the elements of the
search space are arrays of elementary types like strings of bits, integers, floating-
point values and permutations [29,31]. Usual variation operators in the GA are
mutation and crossover [31]. In the context of optimization, exploration (diver-
sification) means finding new points in previously unexplored areas of the search
space, which is achieved by mutation in GAs. Exploitation (intensification) rep-
resents the process of improving and combining the traits of known solutions
which is why crossover is used [29]. For an optimization algorithm to be success-
ful, it needs to have a good balance between those two notions to avoid a too fast
convergence to a local optimum from one side, but also a too long operation time
from the other side. For further information about GAs, we refer to [31]. After
the initial round of experiments, the results have shown that GAs outperform by
far the ES and GAn algorithms. Therefore, in the rest of the paper we consider
only GAs in our experiments.

4.3 Design of the Optimization Algorithm

As noted, in our experiments we use GAs in order to find suitable locations for
the insertion of flip-flops. However, it is easy to notice that a GA on itself is often
not enough. Recall our fitness function where we penalize each incorrect path.
The smaller the number of incorrect paths, the better the solution. Consider the
situation where a GA produces a solution that is not correct, but has only a
small number of incorrect paths. Mutation will help to explore new search space
areas, but in general will not help to correct a slightly incorrect solution. We
noticed that often solutions are incorrect, but we need only a small change to
make them correct. To amend this disadvantage of GAs, we add a local search
(LS) algorithm that tries to correct almost-correct paths. Since now we combine
GAs and local search, we deviate from evolutionary algorithms, and instead go
to the evolutionary computation area. Such a combination of algorithms is called
a memetic algorithm (MA). Memetic Algorithms (MAs) represent a synergy be-
tween evolutionary algorithms (or any other population-based algorithms) and
local improvement algorithms [29]. Most MAs can be interpreted as search strate-
gies in which a population of solutions cooperate and compete [34]. Next, we give
the pseudocode for our optimization algorithm in Algorithms 1 to 4.
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Algorithm 1 represents the main part of our framework and is a somewhat
customized version of a genetic algorithm.

Algorithm 1 Greedy Hibrid SSGA.

P = createInitPopulation(POP SIZE)
evaluate(P)
while not termination do

if LS then
(I1, I2) = getTwoBestFrom(P)
for all individual from (I1, I2) do

I = GreedyLocalSearch(individual)
if fitness(I) better than fitness(bestOf(I1, I2)) then

switch I with worst from P
end if

end for
end if
repeat

randomly add k individuals to the tournament
select the worst one in tournament
(R1, R2) = randomly select two parents from the remaining ones in the tour-
nament
D = randomCrx(R1, R2)
evaluate(D)
replace the worst in P with D

until POP SIZE times
end while

The LS algorithm presented in Algorithm 2 helps us to locate correct solu-
tions that are close to those obtained by the GA.

Algorithm 2 Greedy Local Search.

Require: iteration = 0
repeat

N(I(iteration)) = Neighborhood(I);
I(iteration + 1) = getBestOf(N(I(iteration)))
LocalOp(I(iteration + 1))
iteration = iteration + 1

until MAX ITER times

Next, the Neighborhood algorithm is used to generate a population of solu-
tions that are within Hamming distance of the current solution. Here, by Ham-
ming distance we mean the number of positions (flip-flops) that differ in the two
solutions. The Neighborhood algorithm is given in Algorithm 3.
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Algorithm 3 Neighborhood.

Require: iteration = 0
while N SIZE > iteration do

create individual at Hamming distance d from individual
end while

Finally, the LocalOp algorithm is used to compare the quality of solutions
generated by the local greedy search algorithm and is presented in Algorithm 4.

Algorithm 4 LocalOp.

for all bit postion i in bitsOf(I) do
oldFitness = fitness(I);
flip bit on position i in bitsOf(I);
evaluate(I);
if fitness(I) worse than oldFitness then

flip bit on position i in bitsOf(I);
end if

end for

Common Parameters. To be able to assess the effectiveness of the optimiza-
tion algorithm, and compare the alternatives, we need to define parameter values
for each algorithm variant. Since the observed algorithms are stochastic, their
performance must be evaluated on the basis of repeated runs; therefore, the num-
ber of independent runs for each setting in our experiments is 100. The other
common parameters are selected on the basis of tuning experiments and include
the population size, which is set to 50. The tournament size k in the tournament
selection is equal to 3. The tournament selection works by randomly choosing
3 individuals and then removing the worst one. From the remaining two indi-
viduals, one new solution is created via the crossover operation. The mutation
probability is set to 0.01 per individual where we make a choice on the basis of a
small set of tuning experiments that showed this was the best result on average.
Local search is called every fourth generation, with a maximum of 6 iterations
for local search. The neighborhood size is 35 and the Hamming distance is 10.
Furthermore, we display all common parameters in Table 1.

4.4 Circuit Decomposition

Here, we briefly discuss the additional functionality that our framework incorpo-
rates. It allows to decompose a network on several levels, i.e. subnetworks divided
by flip-flops. Each of those subnetworks realize a part of the functionality of the
complete network and it is possible to pipeline only a subnetwork. We call this
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Table 1: Common parameters.
Parameter Parameter Value

Number of runs 100
Tournament size 3
Population size 50
Stopping criterion Stagnation in 10 generations
Mutation rate 0.01
LS rate 4
Max iteration for LS 6
Neighborhood size for LS 35
Hamming distance in LS 10

procedure network decomposition. However, it is important to state that it is
not always possible to pipeline a subnetwork (or even a network). Therefore,
with regards to Definition 1, we offer the following definition:

Definition 3 It is possible to add flip-flops only to those subnetworks that do
not contain cells with direct inputs to the network.

5 Experimental Results

In this section, we first introduce the results obtained with two different methods
where the focus is on those results obtained with the optimization algorithm.
We perform static timing analysis (STA) on pre-layout netlists synthesized using
Synopsys Design Compiler, which is used to report the area of the designs,
while we use PrimeTime - a golden timing signoff solution and environment by
Synopsys - to perform STA.

In all of our experiments we are using the smallest D-Flip-Flop (DFF) cells
from the appropriate libraries (DFFCLD and DFFCHD) for driving the inputs. Fur-
thermore, we use the load of these cells for all outputs. This models the placement
of the combinatorial network between two registers. The same DFF cells are used
for the pipeline registers.

Lastly, in order to depict the impact of the proposed method on purely com-
binatorial networks, we do not include the setup times of sequential elements in
the presented results.

5.1 Introducing Flip-Flops Manually in the Design Phase

We established that randomly setting flip-flops cannot result in a correct net-
work when working with such complex networks as given here. However, what
about inserting flip-flops in the design phase? In this way, we avoid working
with netlists, but rather with an abstraction of a network that is much easier to
comprehend. Furthermore, this approach is the dominant one when considering
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practical applications [4]. As an example, here we take the AES S-box in polyno-
mial basis and then we insert flip-flops into the inverse8 part. This is represented
in Figures 1a and 1b. Flip-flops are depicted as “fd” cells in the latter figure. We
note that the tool itself changes the network when adding the cells in the design
phase.

(a) Top view of AES S-box in polynomial basis.

(b) Zoom into inverse8 with added FFs.

Fig. 1: Example of inserting FFs in design phase.

5.2 Results for the Optimization Algorithm

In this section, we present the best results we obtained with our memetic algo-
rithm. Alongside, we give basic statistics on the netlists without inserted flip-
flops in Table 2. For an example of full statistics, we point the readers to Ap-
pendix 6. In order to ease the comparison, we calculated the delays for cells as
in [1] where the values are obtained as averages for all possible combinations for
each element. To model the delay of a flip-flop, we can use any value from the
library as long as it is the same for the whole circuit, and here we work with a
D-FF with a single output and no clear signal that has an average delay time of
320.35 ps.

Table 2: Statistics of the preliminary S-box design.

Basis # of cells # of inputs # of paths Critical path (ps)

Polynomial 165 432 8 023 409 3 884.52
Normal 181 497 139 221 044 4 685.724
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In Table 3, we give the best obtained results for our algorithm. If written
only Polynomial, it means that the flip-flops are inserted to the input of a cell,
when flip-flops are added to the output of a cell we denote it with Polynomial,
out.

Table 3: Best solutions.

Basis Layers Critical path (ps) # of added FFs

Polynomial 2 2 065.7435 64
Polynomial, out 2 3 075.6087 11
Normal 2 2 508.8050 73

Finally, in Table 4, we give the percentage value of times that each correct
solution reached a certain critical delay time.

Table 4: Obtained number of correct solutions (%).

Basis Layers 1.5 - 2 2 - 2.5 2.5 - 3 3 - 3.5 3.5 - 4 4 - 4.5 4.5 - 5

Polynomial 2 - 13.04 53.26 32.6 1.08 - -
Polynomial, out 2 - - - 80 20 - -
Normal 2 - - 10.52 - 5.26 36.84 47.37

5.3 The Performance of The Memetic Algorithm

After discussing the successfulness of our approach in the previous section, here
we discuss its reliability and speed. As already stated, those objectives are what
we believe to be the differentiation of a proof of concept from the real-world
framework. For all results we use PCs with Intel i5-3470 CPU with 3.2 GHz,
6 Gb of RAM and 64-bit Windows 7 OS. To obtain the following statistics, we
run every setup 100 times. We consider the algorithm successful if it generates
at least one correct solution. The rationale behind this is supported by the fact
that every stochastic optimization algorithm is meant to be run at least several
times (in other words, it is meaningless to run a stochastic algorithm on a given
problem only once).

When adding one level of flip-flops to the S-box in polynomial representation
where flip-flops are positioned on the input and with 100 000 evaluations, we
obtain a successfulness of 93%. When running the same setup, but with flip-
flops positioned on the output of cells (output-based), the successfulness drops
to only 36.8%. When working with S-boxes in normal basis with flip-flops based
on the inputs of the cells, the successfulness equals 91.6%. To summarize the
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previous results, we can conclude that our algorithm is reliable since it has a
reasonably high success rate. Next, we discuss the speed of our approach based
on the speed of evaluation. Here, an evaluation is the whole process of obtaining
a new individual and examining its fitness. Since it is clear that the evaluation
process depends on the number of paths, it is easy to see that the evaluation
of a solution in polynomial representation will be faster than the one in normal
representation since it has a smaller number of paths as given in Table 2. A single
evaluation of a polynomial representation solution lasts around 100 ms and of
a normal representation solution around 120 ms. However, 10 evaluations last
800 ms, and 100 evaluations last 8 000 ms. We observe that more evaluations
are comparably faster since in Java implementation we have a “warm up” phase
due to the optimizations and JIT compilation. Finally, on average, our algorithm
needs 150 generations to find a solution which amounts to 7 500 evaluations on
average. When accounting for the speed of evaluation, we see that our approach
needs on average 12.5 minutes to output a correct solution with an improved
critical path.

5.4 Static Timing Analysis Results

The critical paths of the synthesized netlists are evaluated using the following
design constraints. Firstly, for both libraries that are used we are using the
enG10k wire load model. Secondly, we perform STA for all available operating
conditions in order to take into account the available driving powers of combi-
natorial networks. Thirdly, we assume the combinatorial networks are driven by
the smallest DFFs. Consistently, all outputs are loaded with the same DFFs.
The setting used for STA is depicted in Figure 2.

Combinatorial
circuits

Combinatorial
circuits
part1

Combinatorial
circuits
part2

Fig. 2: STA setting.

In order to depict the impact of the proposed method on purely combinatorial
networks, we do not include the setup times of the sequential elements in the
presented results. Lastly, due to the fact that DFFs typically have a smaller load
of input pins—while providing stronger drives—than the combinatorial elements
used in the initial network, the sum of delays through both networks is smaller
than the delay of the original network.
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In Table 5 we give the critical paths of the networks for all observed cases. The
last column gives information on the ratio between two critical paths, including
the rising edge setup times of the DFFs used for the model.

Table 5: Critical paths of original and pipelined networks.

Basis Library Operating
Conditions

C. Path
(ns)

Pipeline
C. Path
(ns)

Ratio
(%)

With
setup
(%)

Poly. UMC0.13LL BCCOM 5.91 2.87 48.89 49.92
Poly. UMC0.13LL TCCOM 9.83 4.78 49.03 49.45
Poly. UMC0.13LL WCCOM 17.09 8.36 48.84 49.39
Poly. UMC0.13HS BCCOM 2.35 1.19 50.64 53.78
Poly. UMC0.13HS TCCOM 3.64 1.85 50.82 52.89
Poly. UMC0.13HS WCCOM 6.30 3.20 50.79 52.01
Norm. UMC0.13LL BCCOM 6.28 3.07 49.61 50.16
Norm. UMC0.13LL TCCOM 10.36 5.08 49.38 49.81
Norm. UMC0.13LL WCCOM 18.10 8.84 48.92 49.29
Norm. UMC0.13HS BCCOM 2.58 1.28 49.61 52.55
Norm. UMC0.13HS TCCOM 4.01 1.98 49.38 51.32
Norm. UMC0.13HS WCCOM 6.98 3.45 49.43 50.56

5.5 Discussion and Future Work

The results presented in this work show that our methodology is capable of
finding almost optimal positions for adding flip-flops. However, we must also ask
the question if it is worth while? Although our framework is capable of generating
good results relatively fast, this is still significantly slower than what is the case
when adding flip-flops manually in the design phase. Therefore, the answer to the
previous question depends on the setting. If we have a setting where we require a
critical path that is as small as possible and where we can afford the cost of added
flip-flops, this methodology represents a valuable resource. Otherwise, the total
cost versus the benefit is much less favorable. Furthermore, as main advantage of
our approach compared with the retiming technique is the possibility to divide
the circuit in parts of almost the same critical path size and therefore obtaining
an optimal solution. The same often cannot be said for the retiming technique
due to the optimization towards a minimal number of registers.

We believe our approach can be coupled with the retiming technique to pro-
vide even better results (i.e. our critical path, but with a smaller number of
registers). We emphasize that although we work here on S-boxes realized in
tower fields, there is nothing stopping us to use this method with any other kind
of combinatorial circuit. Naturally, the smaller the critical delay, the smaller the
benefit of pipelining. In any case, pipelining has a big impact on the efficiency
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of certain modes of operation. For fully exploiting the power of the AES in-
structions, one needs a small delay in the mode of operation and that has the
unfortunate side effect that the “better modes of operation” such as CBC are
much less applied and one tends to do counter mode (fully parallelizable). In our
future work we want to extend this research to the whole AES round. The results
showed here suggest our technique should be regarded as a viable option when
looking for optimal pipelining. However, the final verdict must be done only after
a whole cipher round is examined. Besides that, we plan to further improve the
local search part of the algorithm since its efficiency has an extreme impact on
the efficiency of the whole algorithm. On top of that, one interesting research
avenue would be to combine our algorithm with techniques for finding ASAP
(as-soon-as-possible) and ALAP (as-late-as-possible) locations [16] for flip-flops
which could result in a decrease of the search space size for our optimization
algorithm. Finally, it is worth mentioning that the results presented in this pa-
per are pre-layout results. We are aware that the outcome might change when
post-layout results are used, as also mentioned in [35] and [36].

6 Conclusion

In this paper we present a framework that is able to pipeline combinatorial
circuits. To show its performance, we experimented with the AES S-box realized
with tower fields in both polynomial and normal representation. The obtained
results show our approach is highly competitive when the goal is to minimize
the critical path. Furthermore, our results can be regarded as the best possible
since they divide the circuit into two equal parts. The method presented in [1],
as well as the method dominantly used today (Section 5.1) give worse results.
Naturally, the methodology used in this work can be used in other applications
besides cryptography when the goal is to decrease the critical path as much as
possible and where each nanosecond makes a difference.
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Appendix A

Here, we give an example of the results for our statistical tool for a circuit of
interest.

AES S-box Polynomial Basis

--- Network report [start] ---
File: sbox_poli.txt
Num of paths: 8023409
Max path length: 3848.862013890002
Max possible layers: 4 (3 flip-flops)
Max possible num of flip-flops on max path: 31
Solution (BitString) size: 432
Network path delay statistics:
[0-500>: 2
[500-1000>: 2164
[1000-1500>: 149944
[1500-2000>: 2026442
[2000-2500>: 3580150
[2500-3000>: 1899675
[3000-3500>: 361708
[3500-4000>: 3324
[4000-4500>: 0
[4500-5000>: 0

--- Network report [end] ---

In Fig. 3, we give a graphical representation of the AES S-box in polynomial
basis. Blue lines depict internal nodes and red lines direct inputs.

Fig. 3: Graphical representation of the S-box in polynomial basis.


