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Untraceable RFID Authentication Protocols:
Revision of EC-RAC

Yong Ki Lee(1), Lejla Batina(2), and Ingrid Verbauwhede(1),(2)

Abstract— Radio Frequency IDentification (RFID) systems are
steadily becoming paramount due to their vast applications such
as supply chains, inventory, tolling, baggage management, access
control etc. While they have potentials to improve our lives, they
also present a privacy risk. Privacy is often overlooked in many
applications, but due to pervasiveness of RFIDs the issue has
to be taken into account. However, additional security always
comes at price and the scarceness of resources on a tag makes
conventional privacy-preserving protocols infeasible.

In this paper we propose several authentication protocols
that are all made of the same building blocks. More precisely,
we first revise the EC-RAC (Elliptic Curve Based Randomized
Access Control) protocol and we expand it into several authen-
tication protocols. All the proposed protocols satisfy the basic
requirements, which are the system scalability, un-traceability
and security against cloning attacks and replay attacks, but each
protocol has different security properties. The security proofs
are implied by means of cryptographic reductions, i.e. they are
based on the security of the Schnorr protocol and the hardness
of the decisional Diffie-Hellman problem.

Index Terms— Authentication Protocol, RFID System, Elliptic
Curve Cryptography, Tracking Attack, Un-traceability, Mutual
Authentication.

I. INTRODUCTION

The properties that RFID authentication protocols should
preserve are the system scalability and the security against
cloning attacks, replay attacks and tracking attacks. However,
security and privacy for RFIDs are challenging problems due
to the scarceness of resources on a tag such as the computing
capability, memory and energy/power. In addition, each item
should cost only a few cents. Previously, it was shown that
public-key cryptography (PKC) algorithms are necessary to
solve the requirements [4]. Therefore, it is not possible to
satisfy the requirements only with symmetric cryptographic
algorithms such as hash algorithms and symmetric key encryp-
tion algorithms. Furthermore, some conventional PKC based
authentication protocols such as the Schnorr protocol [18] and
the Okamoto protocol [16] were designed without concerns for
the tracking attack, hence they fail to satisfy the un-traceability
which is shown in [11].

In this paper we propose several authentication protocols by
revising and expanding EC-RAC [11]. EC-RAC was proposed
to resolve these requirements but there have been reports
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indicating problems by T. Deursen et. al. [6] and J. Bringerl et.
al. [3] independently. The proposed protocols are consisting
of a few components which are the ID-transfer scheme,
the password-transfer scheme and the server’s authentication
scheme. These components can be combined in different
ways depending on the system and/or security requirements
of applications, which result in 6 different authentication
protocols. Different compositions require different amounts
of computations on the server and a tag. The security proofs
are done by cryptographic reductions. Therefore, the proposed
protocols are secure as long as the underlying primitives are
secure, which are the Schnorr protocol and the Diffie-Hellman
scheme.

The remainder of this paper is organized as follows. In
Sec. 2, some background and related work are given. The
system parameters and the security of EC-RAC are given in
Sec. 3. The components of the authentication protocols are
proposed in Sec. 4, and they are composed to produce final
authentication protocols in Sec. 5. The conclusions of this
paper are given in Sec. 6.

II. BACKGROUND AND RELATED WORK

The operational and cryptographic properties for RFID
systems can be summarized as follows:
• Scalability

Some protocols using hash or symmetric key algorithms,
e.g. [24], [15], are not scalable since the computational
workload on the server increases linearly with the number
of tags. Considering that a general RFID system can
have a large number of tags, the scalability is a required
property.

• Anti-cloning
If a group of tags share the same secret key and use it
for the authentication, it is vulnerable to cloning attacks.
If an attacker succeeds to crack one of the tags, he or
she can use the revealed secret to clone some other tags.
Therefore, a secret key should be pertinent only to a
single tag so that a revealed secret key cannot be used
for any other tag.

• Replay Attack (Impersonation Attack)
An attacker should not be able to generate a valid set of
messages when he does not know the secret keys of a
tag. An attacker may actively query a tag and/or perform
some polynomial time computation utilizing known in-
formation such as the system parameters, the public-key
of the server and the history of exchanged messages.

• Un-traceability (Security against the tracking attack)
RFID tags are supposed to respond with some message
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whenever they receive a query message from a reader. If
the responses are fixed or predictable by an attacker, it
results in a privacy problem. An attacker is possibly able
to track a tag, and hence its owner too, and collect data
for malicious purpose. Therefore, the responses of tags
should be randomized so that it is infeasible to extract any
information of the communications between a tag and a
reader.

• Backward/Forward Un-traceability
Even if all the information of the tag is revealed to an
attacker at a certain moment, an attacker should not be
able to track a tag in the past or future communications.
Therefore, for the proof of this property, we assume an
attacker knows the secret keys of a tag. However, an
attacker still does not know random numbers temporarily
generated and used inside of a tag. This property is a
sufficient condition for the un-traceability. We put this
strong property as an option in the proposed protocols.

Some detailed definitions and models can be found in [10],
[13], [17], [23]. We use definitions from [13]. Since the
security of proposed protocols are proved by cryptographic
reductions, they are rather independent of the security models.
By a reduction, we show that the protocols are as secure
as the underlying primitive schemes. Showing the scalability
and the anti-cloning are negligible since these are trivially
followed by using PK (Public-Key) algorithms and so are
our protocols. The proposing protocols are scalable since
the computation amount is fixed independent of the number
of tags, and are anti-cloning since the used secret keys are
different in each tag. To show the security against the replay
attack and un-traceability we reduce the protocols into the
Schnorr protocol and the Diffie-Hellman scheme. Therefore,
the proposed protocols are as secure as the Schnorr protocol
and the Diffie-Hellman scheme in targeted security properties.

Most of RFID authentication protocols use a hash algorithm
[24], [9], [1], [15], [12], [5], [21], or secret key cryptographic
algorithms [7], [8], [20], for a tag’s cheap implementation
compared to a PKC-based algorithm. However, these protocols
cannot satisfy the basic properties for RFID systems. This is
a consequence of the proof in [4].

There are some papers which propose to use PKC-based
RFID systems [25], [22], [2], [11]. In [25] no specific authen-
tication protocol is mentioned, and the Schnorr protocol [18]
and the Okamoto protocol [16] are adopted in [22] and [2]
respectively. However, it is shown that these two protocols are
not proper for RFID systems due to their vulnerability against
the tracking attack [11]. In [11] EC-RAC is also proposed
to solve all the basic properties required in RFID systems.
However, the works in [3], [6] showed EC-RAC’s vulnerability
against tracking attacks and impersonation attacks. The work
in [3] also proposed the randomized Schnorr protocol as a
replacement of EC-RAC.

III. SYSTEM PARAMETERS AND OVERVIEW

Before designing RFID cryptographic protocols, we should
note that the requirements are different from conventional
cryptographic systems. Considering RFID protocols as au-

thentication protocols, there are some differences from con-
ventional password protocols and PKC based authentication
prtocols as the following:

1) Unlike conventional password protocols, in RFID sys-
tems a tag should not just transfer its ID. Transmitting
an ID in plain text will cause tracking attacks.

2) Unlike conventional PKC based authentication proto-
cols, the protocols are many to one protocols, i.e. many
RFID tags communicate with one reader/server. Due
to this property, tags’ public-keys do not need to be
publicly announced and hence, they can and should be
securely stored and used for authentications in the server.

Since we cannot just transfer a tag’s ID, we need to encrypt
the ID to transfer securely. The server can authenticate a tag
by using the ID. Therefore, a tag and the server should agree
on an encryption key, which means that a PKC algorithm is
inevitable in order to keep the properties of the scalability and
the anti-cloning. Moreover, the encryption of a tag’s ID should
be randomized and different each time a protocol is executed
to be secure against tracking attacks and replay attacks.

Among PKC algorithms, EC based algorithms would be
best choice for RFID systems due to their small key sizes and
efficient computations. For example, a key size of 163 bits in
EC based cryptography has a compatible security level with
a key size of 1024 bits in RSA or DLP (Discrete Logarithm
Problem) based cryptography.

As a start of designing new protocols, two secret keys are
assigned to each tag, which are x1 (ID) and x2 (password),
similarly to conventional password protocols. Since revealing
a tag’s ID causes the tracking attack, the ID is also secret
information just like the password. The public-keys, x1P and
x2P , are used as an ID-verifier and a password-verifier which
are securely stored in the server unlike general public-keys.
For an attacking model, we suppose that an attacker knows
the system parameters which can be revealed by cracking any
of the tags. The system parameters and the storage of each
entity are summarized in Table I. Note that the base point P
must be chosen to have a prime order as required in ECC [14],
[19].

TABLE I
SYSTEM PARAMETERS

y : Server’s private key
Y (= yP ) : Server’s public-key
x1 : Tag’s ID

System x2 : Tag’s password
Parameters X1(= x1P ) : Tag’s ID-verifier

X2(= x2P ) : Tag’s password-verifier
P : Base point in the EC group whose order
is a prime
n : Prime order of P

Server’s storage y, X1, x1, X2, P , n
Tag’s storage x1, x2, Y , P , n

Attacker’s storage Y , P , n : Publicly known information

In the rest of the section, EC-RAC [11] and its security
analysis are summarized.
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• Server’s input: y, x1, X1(= x1P ), X2(= x2P )
• Tag’s input: x1, x2, Y (= yP )

Verifier(Server) Prover(Tag)

r2 ∈R Z r1 ∈R Z
r2 -

If r2 6= 0 then
T1 ← r1P ,
T2 ← (r1 + x1)Y ,

T1, T2, v� v ← r1x1 + r2x2.
y−1T2−T1 = X1

Look up x1 and X2 paired with X1.
Accept if (vP − x1T1)r

−1
2 = X2.

Fig. 1. The EC-RAC Protocol Flow

A. The EC-RAC protocol

The EC-RAC protocol is shown in Fig. 1. After receiving
a random number from the server, a tag generates and sends
three messages T1(= r1P ), T2(= (r1+x1)Y ) and v(= r1x1+
r2x2). Then, the server derives X1 and uses it to search out
x1 and X2 in a local database. Finally, the server validates a
tag by checking whether the result of (vP − x1T1)r−1

2 = X2

matches with the stored X2.

B. Cryptanalysis of EC-RAC

The EC-RAC protocol is aimed to be secure against the
tracking attack [11]. However, it is shown that in EC-RAC a
tag can be still tracked by an active attack as proposed in [6].
The failure of the security proof is caused by neglecting the
possibility that an attacker can use multiple sets of authentic
communication history. An attacker can generate a random
number c for r2 and use it twice to get two different sets of
responses from a tag. A tag will generate two random numbers
k1 and k2 for each of the authentication protocol.

{T (1)
1 , T

(1)
2 , v(1)} = {k1P, (k1 + x1)Y, k1x1 + cx2},

{T (2)
1 , T

(2)
2 , v(2)} = {k2P, (k2 + x1)Y, k2x1 + cx2}.

Then, an attacker can perform the following calculation.

(T (1)
1 − T

(2)
1 ) · (v(1) − v(2))−1

= (k1 − k2)Y · {(k1 − k2)x1}−1 = x−1
1 Y.

Since the result x−1
1 Y can be a fixed value for a specific tag,

a tag can be traced by an attacker.
More generalized tracking attacks and impersonation attacks

are reported in [3].

IV. PROTOCOL DESIGN IN COMPONENTS

We consider the protocols in three parts as follows:
1) A tag’s ID transfer to the server

a) A tag encrypts and transfers its ID-verifier to the
server.

b) The server decrypts a tag’s ID-verifier.
2) A tag’s password transfer to the server

a) A tag encrypts and transfers its password-verifier
to the server.

b) The server decrypts a tag’s password-verifier and
authenticates a tag.

3) The server’s proof of its authentication to a tag
a) The server transfers a session identifier to a tag.
b) A tag verifies the server by checking the received

identifier.
These three parts can be independently designed and an-

alyzed, and can be composed differently depending on the
required system and/or security requirements.

A. Secure ID Transfer Scheme

1) Protocol Description: The ID-transfer scheme is shown
in Fig. 2 and 3. In this scheme, a tag generates a random
number rt1 and T1, and transfers T1 to the server. Then,
the server responds with a random challenge rs1, and a tag
produces and transfers T2 to the server. After receiving T2,
the server calculates a tag’s ID-verifier x1P (= X1). Note that
the server decrypt the tag’s ID-verifier instead of the ID itself.
This ID transfer scheme is a basic component that is required
for all protocols in the paper.

• Server’s input: y
• Tag’s input: x1, Y (= yP )

Verifier(Server) Prover(Tag)

1) rt1 ∈R Z
T1� T1 ← rt1P

2) rs1 ∈R Z rs1 -

3) T2� T2 ← (rt1 + rs1x1)Y

4) (y−1T2 − T1)r
−1
s1 = x1P

Fig. 2. Secure ID Transfer Flow

1) Tag generates a random number rt1 and T1, and sends
T1 to Server.

2) Server generates and sends a random challenge rs1 to
Tag.

3) Tag generates and sends T2 to Server.
4) Server derives Tag’s ID-verifier: (y−1T2 − T1)r−1

s1

= (y−1(rt1 + rs1x1)yP − rt1P )r−1
s1 = x1P = X1.

Fig. 3. Secure ID Transfer Description

It is possible to use only the ID transfer scheme for the
authentication of a tag. The server may authenticate a tag by
checking whether the decrypted ID-verifier exists in the list.
However, a large number of tags may weaken the security
level of the system. For example, if there are millions of tags,
the probability that a randomly selected ID is identified as a
valid one becomes millions times bigger than the case of only
one tag. This would results in a reduction of the security level.
Therefore, if the number of tags is large, the password transfer
scheme should be used together with the secure ID transfer
scheme to guarantee the full security of a key size.
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2) Security Analysis: Security of the ID transfer scheme
can be proved by cryptographic reductions. This can be
reduced into two different schemes, the Schnorr protocol [18]
and the Diffie-Hellman scheme.

Theorem 1: The secure ID transfer scheme can be cryp-
tographically reduced to the Schnorr protocol. Therefore, the
cryptographic properties of the Schnorr protocol are inherited
to the secure ID transfer scheme.

Proof: The only difference between the ID transfer
scheme and the Schnorr protocol is in the message of the last
round. While the ID transfer scheme transfers T2(= (rt1 +
rs1x1)Y ), the Schnorr protocol transfers (rt1 + rs1x1). Given
(rt1 + rs1x1) and Y which are known values to attackers,
T2 can be easily calculated. However, given T2 and Y ,
(rt1+rs1x1) cannot be easily calculated since it is the ECDLP
(Elliptic Curve Discrete Logarithm Problem). Therefore, the
proposed ID transfer scheme can be cryptographically reduced
to the Schnorr protocol and is at least as secure as the Schnorr
protocol.

According to Theorem 1, the ID transfer scheme is secure
against replay attacks as much as the Schnorr protocol is.
However, since the Schnorr protocol is vulnerable to tracking
attacks as shown in [11], the security of the ID transfer
scheme against tracking attacks should be separately shown.

Theorem 2: The secure ID transfer scheme can be crypto-
graphically reduced to the Diffie-Hellman scheme. Therefore,
the cryptographic properties of the Diffie-Hellman scheme are
inherited to the secure ID transfer scheme.

Proof: The ID transfer scheme can be considered as
an encryption scheme using the Diffie-Hellman key agrement
protocol. A one-time session key can be established between
the server and a tag by a tag’s transmission of T1(= rt1P ).
Since the public-key of the server is already known to a tag, a
shared session key can be derived as rt1 ·Y (= rt1yP ) in a tag,
and as y · T1(= yrt1P ) in the server. Now, we can interpret
the message T2 as an encryption of rs1x1yP with the key
of rt1yP . The encryption is done by performing an EC point
addition, which can be seen in T2 = rt1yP + rs1x1yP . Since
rt1yP is a randomly generated session key and used only once,
the EC point addition is sufficient for the secure encryption.

Since rs1 is used just to scramble the message being
encrypted, there is no effect in the encryption unless rs1 = 0
which has negligible probability. Even if we consider the case
of rs1 = 0 which may occur by attackers, T2 becomes the
shared random session key itself, rt1yP , without encrypting
anything. Nevertheless, it does not reveal anything since the
used session key would not be used in the future and the
generated messages cannot be used to be authenticated by the
server.

Therefore, the ID transfer scheme can be cryptographically
reduced to the Diffie-Hellman scheme and is at least as secure
as the Diffie-Hellman scheme.

Since the used session key is a randomly generated one-time
key, it is infeasible to link encrypted messages, i.e. exchanged
messages, to a specific tag. Therefore, Theorem 2 ensures that
tags are untraceable in the ID transfer scheme as long as the

decisional Diffie-Hellman problem is hard. The ID transfer
scheme is also backward/forward un-traceable. Since the used
one-time session key (rt1yP ) is produced by a tag’s site key
(rt1) instead of using a tag’s secret key (x1), the revealed
secret key of a tag does not help to produce rt1yP .

In the ID-transfer scheme, we encrypt rs1x1yP instead of
the ID-verifier x1P where rs1 is inserted to prevent the replay
attack, which can be interpreted as a part of the Schnorr
protocol, and y to simplify the computation on a tag. Note
that rs1x1yP is equivalent to x1P for the server since rs1

and y are known to the server.

B. Secure Password Transfer Scheme
1) Protocol Description: The password transfer scheme is

performed after the ID-transfer scheme. Therefore, this scheme
starts with an assumption that the server knows the ID-verifier
(X1) already. Since the server stores a set consisting of the ID-
verifier (X1), the ID (x1) and the password-verifier (X2) for
each tag, the server can search the database to find x1 and X2

which are paired with X1 to use for the password verification.
The password transfer scheme is described in Fig. 4 and 5.

• Server’s input: y, X1(= x1P ), x1, X2(= x2P )
• Tag’s input: x1, x2, Y (= yP )

Verifier(Server) Prover(Tag)

1) rt1 ∈R Z
T1� T1 ← rt1P

2) rs1 ∈R Z rs1 -

3) T2� T2 ← (rt1x1+rs1x2)Y

4) (y−1T2 − x1T1)r
−1
s1 = x2P

Fig. 4. Secure Password Transfer Flow

1) Tag generates a random number rt1 and T1, and sends
T1 to Server.

2) Server generates and sends a random number rs1 to
Tag.

3) Tag generates and sends T2 to Server.
4) Server derives Tag’s password-verifier:

(y−1T2 − x1T1)r−1
s1

= (y−1(rt1x1+rs1x2)yP−x1rt1P )r−1
s1 = x2P = X2.

Fig. 5. Secure Password Transfer Description

2) Security Analysis: The design concept of the password
transfer scheme is the same as the ID transfer scheme. Instead
of (rt1 + rs1x1)Y , (rt1x1 + rs1x2)Y is used for T2. Note
that the used random number rt1 between the two schemes
may not be the same at this moment. The security analysis of
the password-transfer scheme can be performed in a similar
way as the ID-transfer scheme, and has the same security
properties.

C. Server’s Authentication to a tag
Authentication of the server to a tag is somewhat different

from the tag-to-server authentication since there is only one



5

TABLE II
AUTHENTICATION PROTOCOL CONSTRUCTIONS AND THEIR SECURITY PROPERTIES

Clasify Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5 Protocol 6

Components

ID-Transfer O O O O O O
Pwd-Transfer 1 X O X X O X
Pwd-Transfer 2 X X O X X O
Server’s Auth. X X X O O O

# of point multiplications in the server 2 4 4 4 6 6
# of point multiplications in a tag 2 3 4 4 5 6

Properties

Number of tags Small Large Large Small Large Large
Backward/Forward Secure Vulnerable Secure Secure Vulnerable Secureun-traceability

Authentication One-way One-way One-way Mutual Mutual Mutual
* Common properties: scalability, protection against cloning attacks, replay attacks, tracking attacks

server. There is no need to transfer the server’s ID since
a tag is expecting the specific server. The server proves its
authenticity to a tag by sending a session identifier yrt1P
which is calculated by y · T1. The tag can check the validity
of the received identifier from the server by calculating rt1 ·Y .
Since there is no information to encrypt or decrypt, showing
the session identifier will be enough to show its authenticity.

• Server’s input: y
• Tag’s input: Y (= yP )

Prover(Server) Verifier(Tag)

1) rt1 ∈R Z,
T1� T1 = rt1P .

2) If nT1 6= O or T1 = O,
then halts,
else S1 ← yT1. S1 -

3) If rt1Y = S1, then
accept else reject.

Fig. 6. Protocol Flow for Server’s Authenticity

1) Tag generates a random number rt1 and T1, and sends
T1 to Server.

2) Server checks if nT1 = O and T1 6= O. If the result is
valid, Server generates and sends S1 to Tag.

3) Tag checks if rt1Y = S1. If the result is valid, Tag
authenticates Server as a valid one.

Fig. 7. Protocol Description for Server’s Authenticity

In step 2 in Fig. 6 and 7, the server should check the validity
of T1. If nT1 = O, then the possible orders of T1 are the
factors of n. Since n is a prime, there are only two possible
orders, 1 and n itself. Therefore, by excluding the case of 1,
i.e. T1 = O, the order of T1 can be assured to be n. This is
important since an attacker may control the value of T1 and
use the responses of the server to guess the server’s private
key y. He possibly chooses and sends an EC point of a small
order. For example, if an attacker choose a point of the order 2,
he can decide whether y is a even or odd number by checking
whether the responded point is T1 or O. This kind of attacks

will reveal the private key of the server. To prevent this attack,
the server should check whether T1 has the correct order n.

V. AUTHENTICATION PROTOCOL CONSTRUCTION

The proposed schemes, the ID transfer scheme, the pass-
word transfer scheme and the server’s authentication scheme
can be combined to produce a proper authentication protocol
depending on the required system and security properties.

The possible combinations and their properties are summa-
rized in Table II. In the protocol 1, we are just using the ID
transfer scheme for a tag’s authentication. The server authen-
ticates a tag by checking the existence of a tag’s ID-verifier on
the list. This would be effective to minimize the computation
workload on a tag if the number of tags is relatively small.
If the number of tags is large enough, the ID transfer scheme
should be combined with the password transfer scheme. The
combination can be done in two different ways which are
marked with ’Pwd-Transfer 1’ and ’Pwd-Transfer 2’ in Table
II. These have different computation amounts and different
security properties. The protocols 1, 2 and 3 are expanded
by combining with the server’s authentication scheme to the
protocols 4, 5 and 6 respectively. In Table II, an ’O’ indicates
the used components, otherwise a ’X’ is marked.

All the protocols are scalable and secure against cloning
attacks, replay attacks and tracking attacks. The protocol
1 is the most simple version requiring only two EC point
multiplications on both the server and a tag, but it has a
limitation on the number of tags and no server’s authentication.
While the protocol 3 (protocol 6) has an additional security
property of the backward/forward un-traceability compared to
the protocol 2 (protocol 5), it requires one more EC point
multiplication on a tag.

A. Protocol Variations: Protocol 2

1) Protocol Description: The first combination of the ID
transfer scheme and the password transfer scheme is the
protocol 2 in Table II which is described in Fig. 8 and 9. In
this protocol, the random point T1(= rt1P ) is used not only
for the ID transfer scheme but also for the password transfer
scheme in order to minimize the computation amount on a
tag.
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• Sever’s input: y, X1(= x1P ), x1, X2(= x2P ) • Tag’s input: x1, x2, Y (= yP )

Server Tag

rt1 ∈R Z,
1) T1� T1 ← rt1P .

2) rs1 ∈R Z. rs1 -
T2 ← (rt1 + rs1x1)Y ,

3) T2, T3� T3 ← (rt1x1 + rs1x2)Y .
4) (y−1T2 − T1)r

−1
s1 = x1P .

(Look up x1 and X2 paired with x1P )
5) If (y−1T3 − x1T1)r

−1
s1 = X2, then accept else reject.

Fig. 8. Protocol 2 Flow

1) Tag generates a random number rt1 and T1, and sends T1 to Server.
2) Server generates and sends a random number rs1 to Tag.
3) Tag generates and sends two messages T2 and T3 to Server.
4) Server calculates (y−1T2 − T1)r−1

s1 =
{
y−1(rt1 + rs1x1)yP − rt1P

}
r−1
s1 = x1P = X1 and using the result (X1)

searches for x1 and X2. If there is no valid set for X1, then Server halts.
5) Server computes (y−1T3 − x1T1)r−1

s1 =
{
y−1(rt1x1 + rs1x2)yP − x1rt1P

}
r−1
s1 = x2P and checks whether it is

equal to the stored X2. If so, Server authenticates Tag as a valid one.

Fig. 9. Protocol 2 Description

• Sever’s input: y, X1(= x1P ), x1, X2(= x2P ) • Tag’s input: x1, x2, Y (= yP )

Server Tag

rt1, rt2 ∈R Z,

1) T1, T2� T1 ← rt1P , T2 ← rt2P .

2) rs1 ∈R Z. rs1 -
T3 ← (rt1 + rs1x1)Y ,

3) T3, T4� T4 ← (rt2x1 + rs1x2)Y .
4) (y−1T3 − T1)r

−1
s1 = x1P .

(Look up x1 and X2 paired with x1P )
5) If (y−1T4 − x1T2)r

−1
s1 = X2, then accept else reject.

Fig. 10. Protocol 3 Flow

2) Security Analysis: By generating and transmitting T1(=
rt1P ) to the server, a tag and the server can share two one-
time session keys: rt1yP and rt1x1yP . Though two session
keys use the same random number rt1, they are independent
since x1 is unknown to an attacker. This can be interpreted
as follows. Since x1 is a randomly chosen fixed number,
x1yP can be seen as another random public-key of the server.
Although the used random umbers are the same, they are
independent since the used public-keys of the server are
independent. In other words, two one-time session keys are
independent as long as x1 is unknown. The session key rt1yP
is used to encrypt rs1x1yP and rt1x1yP to encrypt rs1x2yP .
Therefore, the security property is directly inherited from the
security analyses of the ID transfer scheme and the password
transfer scheme if x1 is unknown to an attacker.

However, Protocol 2 does not satisfy the forward/backward

un-traceability. For example, assuming that an attacker knows
x1 and x2, he can compute {T2 − (T3 − rs1x2Y )/x1}/rs1 =
x1Y which can be used to track a tag. This weakness can
be explained as follows: If x1 is revealed to an attacker, the
two one-time session keys, rt1yP and rt1x1yP , are dependent
since the second session key can be derived from the first one.
Specifically, rt1yP ·x1 = rt1x1yP , which means that the two
session keys are basically the same given x1. This violates
our purpose to use each session key only once. Therefore, this
leaves a possibility of security weakness and actually causes
the tracking attack.

B. Protocol 3

1) Protocol Description: In order to be secure against the
forward/backward tracking attack, the protocol 2 is revised
to the protocol 3 (Fig. 10). In this case a tag generates two
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• Sever’s input: y, X1(= x1P ) • Tag’s input: x1, x2, Y (= yP )

Server Tag

1) rt1, rt2 ∈R Z,
T1, T2� T1 ← rt1P , T2 ← rt2P .

2) If nT1 6= O or T1 = O, then halts,

else S1 ← yT1, rs1 ∈R Z. S1, rs1 -
If rt1Y 6= S1, then halts (reject the
server), else continue.

3) T3� T3 ← (rt2 + rs1x1)Y .
4) (y−1T3 − T2)r

−1
s1 = x1P .

If x1P exists in the list, then accept else reject.

Fig. 11. Protocol 4 Flow

• Sever’s input: y, X1(= x1P ), x1, X2(= x2P ) • Tag’s input: x1, x2, Y (= yP )

Server Tag

1) rt1, rt2 ∈R Z,
T1, T2� T1 ← rt1P , T2 ← rt2P .

2) If nT1 6= O or T1 = O, then halts,

else S1 ← yT1, rs1 ∈R Z. S1, rs1 -
If rt1Y 6= S1, then halts (reject the
server), else continue.
T3 ← (rt2 + rs1x1)Y ,

3) T3, T4� T4 ← (rt2x1 + rs1x2)Y .
4) (y−1T3 − T2)r

−1
s1 = x1P .

(Look up x1 and X2 paired with x1P )
5) If (y−1T4 − x1T2)r

−1
s1 = X2, then accept, else reject.

Fig. 12. Protocol 5 Flow

• Sever’s input: y, X1(= x1P ), x1, X2(= x2P ) • Tag’s input: x1, x2, Y (= yP )

Server Tag

1) rt1, rt2, rt3 ∈R Z,
T1, T2, T3� T1 ← rt1P , T2 ← rt2P , T3 ← rt3P .

2) If nT1 6= O or T1 = O, then halts,

else S1 ← yT1, rs1 ∈R Z. S1, rs1 -
If rt1Y 6= S1, then halts (reject the
server), else continue.
T4 ← (rt2 + rs1x1)Y ,

3) T4, T5� T5 ← (rt3x1 + rs1x2)Y .
4) (y−1T4 − T2)r

−1
s1 = x1P .

(Look up x1 and X2 paired with x1P )
5) If (y−1T5 − x1T3)r

−1
s1 = X2, then accept, else reject.

Fig. 13. Protocol 6 Flow

random numbers and each one is used only once to encrypt
its ID-verifier or password-verifier.

2) Security Analysis: If we simplify the protocol 3 by
setting rt1 = rt2, it becomes exactly the same as the protocol
2. Therefore, the protocol 3 inherits the security properties of
the protocol 2. Moreover, even if we assume that an attacker

knows x1 and x2, two session keys, rt1yP and rt2x1yP ,
are independent from each other since two different random
numbers make the two session keys independent. As a result,
the forward/backward un-traceability is kept from the ID
transfer scheme and the password transfer scheme.
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C. Protocol 4, 5 and 6

The protocols 1, 2 and 3 are directly combined with the
server’s authentication scheme to produce the protocols 4,
5 and 6 (Fig. 11, 12 and 13). Since the server transmits
the session identifier S1 = rt1yP itself, the random number
used in S1 cannot be reused for other one-time session keys.
Since the server’s authentication scheme is combined with an
independently generated random number, security proofs of
the protocols 4, 5 and 6 are not necessary. They will directly
inherit all the security properties of the protocols 1, 2 and 3,
respectively.

D. Some Other Consideration

There should be some secret information of a tag which
is not stored in the server. This will prevent duplicating tags
even if the server is cracked and all the information in the
server is revealed to an attacker. In the protocols 1 and 4, the
server does not store x1, and in the protocols 2, 3, 5 and 6, the
server does not store x2. Therefore, in the proposed protocols,
an attacker cannot duplicate tags even if he succeeds to crack
the server.

In order to simplify the computations and controls, inver-
sions of scalars and general EC point additions/substractions
are avoided on tags while they are not on the server. For
example, in the protocol 2 (Fig. 8), (y−1T2−T1)r−1

s1 requires
the inversions of y and rs1, and a general point substraction
of (y−1T2)− T1 in the server.

VI. CONCLUSION

In this paper, we proposed composable RFID authenti-
cation protocols by revising and expanding EC-RAC. The
three components, the secure ID transfer scheme, the secure
password transfer scheme, and the server’s authentication, can
be differently constructed depending on the required system
and security properties, resulting in 6 different protocols. The
proposed protocols are designed to minimize the computation
amount on tags, and the security of the protocols is proved
by cryptographic reductions with assumptions of the Schnorr
protocols’ security and the hardness of the decisional Diffie-
Hellman problem.
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