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NUSH 
 
 

CRYPTOGRAPHIC ALGORITHMS  
BASED UPON THE BLOCK CIPHER CALLED 

“NUSH” 
 
 
Algorithm “NUSH” 
 
DEFINITIONS 
 
n - 32 (16, 64) - registers length (in bits) 
N - 4*n - block size of the algorithm NUSH block 
К - initial key of the algorithm (in bits, equals t*n and >= 128) 
l - number of round of the NUSH algorithm 
L - number of iterations (equals 4*l) 
a, b, c, d  - four of n-bit long registers of the algorithm NUSH 
KR[i] - keys for the iterations ( i =0,...,L-1) 
KS[i] - initial keys of the algorithm (i=0,...,3) 
KF[i] - final keys of the algorithm (i=0,...,3) 
С[i] - n-bits registers ( i=0,...,L-1) 
S[i] - integers from 0 trough n-1 – cyclic rotation (to the right, i.e. to the least bit) 
lengths for the i-th iteration ( i=0,...,L-1) 
 
BASIC OPERATIONS 
 
# - binary addition (OR) or binary multiplication(&) of two n-bit vectors, 
+ - addition mod2n or XOR of two n-bit vectors 
>>>t - cyclic rotation to the right (to the least bit) of an n-bit register by t bits 
 
TRANSFORMATIONS 
 
R  - transformation of the four n-bit registers a, b, c, d; 
parameters of the transformation R are: k is an n-bit register,  
s is an integer from 0 through n-1 
R(a, b, c, d, k, s) = (a1, b1, c1, d1) 
c1 = c + k 
c1 = c + b 
c1 = c >>> s 
a1 = a + (c1 # d) 
b1 = b 
d1 = d 
Or 
c1 = (c + k + b)>>>s 
a1 = a+ c1 # d  
b1 = b 
d1 = d

We call a transformation R “an iteration”. 
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Round of the algorithm NUSH 
 
One round of the algorithm consists of the four iterations of the form 
R(a, b, c, d, k1, s1) 
R(b, c, d, a, k2, s2) 
R(c, d, a, b, k3, s3) 
R(d, a, b, c, k4, s4) 
 
Main body of the algorithm NUSH  
 
The main body of the algorithm consists of L rounds, the i-th round looks like (i =0, 
...,L): 
R(a, b, c, d, KR[4*i]+C[4*i],S[4*i]) 
R(b, c, d, a, KR[4*i+1] +C[4*i+1], S[4*i+1]) 
R(c, d, a, b, KR[4*i+2] +C[4*i+2], S[4*i+2]) 
R(d, a, b, c, KR[4*i+3] +C[4*i+3], S[4*i+3]) 
 
Initial transformation: 
 
START(a, b, c ,d, KS) – transformation of the registers a, b, c ,d 
(a1, b1, c1 ,d1) = START(a, b, c ,d) 
a1 = a + KS[0] 
b1 = b + KS[1] 
c1 = c + KS[2] 
d1 = d + KS[3] 
 
Final transformation: 
 
FINAL(a, b, c ,d, KF) – transformation of the registers a, b, c ,d 
(a1, b1, c1 ,d1) = FINAL(a, b, c ,d) 
a1 = a + KF[0] 
b1 = b + KF[1] 
c1 = c + KF[2] 
d1 = d + KF[3] 
 
 
ENCRYPTION  
 
The algorithm NUSH transforms four n-bit input registers a, b, c, d to the four output 
n-bit registers A, B, C, D.  
Steps 
1.  Generation of the keys for the iterations, initial iteration and final iteration keys 

from the initial key K of the algorithm NUSH. 
2.  Setting of the algorithm parameters: rotations S[i] and registers С[i] 
3.  Initial transformation 
4.  Execution of the L rounds of the algorithm’s main body 
5.  Final transformation 
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Below we use the following notations: 
(A, B, C, D) = NUSH(a, b, c ,d) or  
(A, B, C, D) = NUSH(a, b, c ,d, K, S, C), where S and C are notations for the contents 
of all the registers S[i] and С[i], and the initial key K is used to generate the keys 
KS[i], KR[i], KF[i]. 
 
In pseudo code the main body (without initial settings) of the algorithm NUSH looks 
like this 
 
START(a, b, c ,d, KS) 
R(a, b, c, d, KR[0]+C[0],S[0]) 
R(b, c, d, a, KR[1] +C[1], S[1]) 
R(c, d, a, b, KR[2] +C[2], S[2]) 
R(d, a, b, c, KR[3] +C[3], S[3]) 
... 
R(a, b, c, d, KR[4*l-4] +C[4*l-4], S[4*l-4]) 
R(b, c, d, a, KR[4*l-3] +C[4*l-3], S[4*l-3]) 
R(c, d, a, b, KR[4*l-2] +C[4*l-2], S[4*l-2]) 
R(d, a, b, c, KR[4*l-1] +C[4*l-1], S[4*l-1]) 
FINAL(a, b, c ,d, KF) 
 
 
Visually it may be depicted in the following way: 
 
 
Initial transformation 

 
a b c d

KS[0] KS[1] KS[2] KS[3]

 
 
Final transformation 

 

a b c d

KF[0] KF[1] KF[2] KF[3]
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Round function 
 
The i-th round looks like 
 

a b c d

F1

G1 F2

G2

F3

G3

F4

G4

a b c d

KRC[i*4]

KRC[i*4+2]

KRC[i*4+1]

KRC[i*4+3]

 
Here KRC[i] is for KR[i] +C[i].  
 
 
 
Formally the functions Fi and Gi are different for the different rounds but we do not 
pay much attention to this fact here.  
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The pair of functions Fi and Gi combine an iteration and look like: 
 
Functions Fi 

+

+

>>> S

X Y K

 
 
Functions Gi 
 

X Y Z

#

+
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DECRYPTION 
 
The transformations START and FINAL are invertible with the inverses  
START-1 and FINAL-1 . 
The transformation R is also invertible with the inverse to 
R(a, b, c, d, k, s) of the form 
 
R-1(a1, b1, c1, d1, k, s) = (a, b, c, d) 
 
d = d1 
b = b1 
a = a1 - (c1 # d)  
c = c1 >>> (n-s)  
c = c - k 
c = c - b 
 
(here by the «-» we denote the inverse operation to +, i.e. subtraction mod2n or XOR 
of two binary n-bit vectors) 
 
To decrypt a block of cipher text we perform the following transformations 
 
FINAL -1(a, b, c ,d, KF) 
R-1(d, a, b, c, KR[4*l-1] +C[4*l-1], S[4*l-1]) 
R-1(c, d, a, b, KR[4*l-2] +C[4*l-2], S[4*l-2]) 
R-1(b, c, d, a, KR[4*l-3] +C[4*l-3], S[4*l-3]) 
R-1(a, b, c, d, KR[4*l-4] +C[4*l-4], S[4*l-4]) 
 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
R-1(d, a, b, c, KR[3] +C[3] S[3]) 
R-1(c, d, a, b, KR[2] +C[2], S[2]) 
R-1(b, c, d, a, KR[1] +C[1], S[1]) 
R-1(a, b, c, d, KR[0]+C[0],S[0]) 
START -1(a, b, c ,d, KS) 
 
If we get the block (A, B, C, D) after decryption of the block (a, b, c, d), we write: 
(A, B, C, D) = NUSH-1(a, b, c ,d) or 
(A, B, C, D) = NUSH-1(a, b, c ,d, K, S, C),  
where S and C are for all the contents of all the registers S[i] and С[i], with the initial 
key K used to form the keys KS[i], KR[i], KF[i]. 
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Block cipher “NUSH Block” 
 
GENERAL 
 
The algorithm encrypts data by blocks of N bits each. Current block is read from the 
input registers a, b ,c ,d (the least bit of the plain text is in the least bit of the register 
“a”, the most bit of the text is in the most bit of the register “d”). 
 
Cipher text of the plaintext block (a, b, c, d) is the block (A, B, C, D) of the same 
length N bit 
(A, B, C, D) = NUSH(a, b, c ,d, K, S, C)  
(the least bit of the cipher text is in the least bit of the register  A, and the greatest bit 
of the cipher text is in the greatest bit of the register D). 
 
Decryption of the block (A, B, C, D) (where the least bit of the cipher text is in the 
least bit of A and the greatest bit of the cipher text is in the greatest bit of D) is to the 
block (a, b, c, d) in accordance with the formula 
(a, b, c, d) = NUSH-1(A, B, C ,D, K, S, C)  
(the least bit of plain text is in the least bit of the register “a” and the greatest bit of 
plain text is in the greatest bit of the register “d”) 
 
PARAMETERS 
  
1.  64-bit block 
n=16, N=64 
l=9, L=36 (all the constants are hexadecimal) 
 
I C[i] i C[i] i C[i] i C[i] 
0 ac25 9 6a29 18 96da 27 d25e 
1 8a93 10 6d84 19 905f 28 a926 
2 243d 11 34bd 20 d631 29 1c7b 
3 262e 12 a267 21 aa62 30 5f12 
4 f887 13 cc15 22 4d15 31 4ecc 
5 c4f2 14 04fe 23 70cb 32 3c86 
6 8e36 15 b94a 24 7533 33 28db 
7 9fa1 16 df24 25 45fc 34 fc01 
8 7dc0 17 40ef 26 5337 35 7cb1 
 
I S[i] i S[i] i S[i] i S[i] 
0 4 9 2 18 5 27 13 
1 7 10 9 19 1 28 12 
2 11 11 4 20 2 29 3 
3 8 12 13 21 4 30 6 
4 7 13 1 22 12 31 11 
5 14 14 14 23 3 32 7 
6 5 15 6 24 9 33 15 
7 4 16 7 25 2 34 4 
8 8 17 12 26 11 35 14 
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2. 128-bit block 
 
n=32, N=128 
l=17, L=68 
 
I C[i] i C[i] I C[i] i C[i] 
0 9b28a37b 18 c443f6cc 36 aa7de138 54 362f2f4a 
1 9de5b521 19 e84c5bcb 37 a674a66c 55 6ccb630d 
2 0b8ee0d7 20 f750a732 38 b3f54983 56 97919d88 
3 672aa715 21 2cde9942 39 ae29d0db 57 823f95ac 
4 0e356c9f 23 370c437a 40 599470cb 58 67c99a98 
5 bf54692a 23 da8b5654 41 3b2e3fa0 59 8e91d0cb 
6 dc9e15c8 24 99a76750 42 a354cc6f 60 ab796817 
7 06d736e8 25 a1559437 43 516af8c4 61 356459a7 
8 9263e8cf 26 9ea46718 44 ade11d33 62 668d9fa8 
9 1fcd682d 27 83e984f8 45 860d95f2 63 0d4dbf40 
10 7368b074 28 ab5692e4 46 bc2731a4 64 1acce5d8 
11 2654f15a 29 a6c5c46a 47 ccd12baa 65 f53b24c1 
12 00eb3e4d 30 25fb110e 48 ba518e95 66 6db89876 
13 18d62f6d 31 55955b2e 49 22f7583a 67 5c965da5 
14 632a557a 32 fa639063 50 6c0a5fe8   
15 1d953d21 33 027e4dc6 51 8fac2d74   
16 cd4b2acd 34 919e96b2 52 d129e934   
17 49a0d3f4 35 62e96d0c 53 11dce4c9   
 
 
 
I Si] i S[i] I S[i] i S[i] 
0 7 18 26 36 12 54 7 
1 5 19 4 37 24 55 15 
2 15 20 29 38 27 56 1 
3 14 21 16 39 10 57 13 
4 3 22 2 40 16 58 15 
5 30 23 22 41 24 59 1 
6 4 24 23 42 9 60 23 
7 23 25 11 43 13 61 28 
8 13 26 26 44 5 62 12 
9 12 27 13 45 10 63 2 
10 26 28 20 46 26 64 28 
11 16 29 5 47 30 65 14 
12 9 30 28 48 9 66 15 
13 28 31 17 49 16 67 12 
14 8 32 19 50 28   
15 18 33 22 51 24   
16 23 34 6 52 27   
17 8 35 25 53 6   
 



 

 9

3. 256-bit block 
 
 
n=64, N=256 
l=33, L=132 
 

I C[i] i C[i] i C[i] i C[I 
] 

0 1a028e3b458fe65f 33 17c41d9833728fe9 66 0289fbe8ce5bd06a 99 5036e2ee9c4166b9 
1 10cb1c5cac3c7a75 34 7e692e4db9d09471 67 26dbaa50cbc1e8b9 100 6d32721cf1269e70 
2 0aa54c8d55cc6f5e 35 c900cde6cb8aa557 68 4116b2b8d89aff86 101 c51e826355ec445f 
3 ee4ac8b12e2fc8d5 36 eb2b8576c0419fe3 69 1d658d6eef814e49 102 0e8e66931ef37c41 
4 f787d15c240344d7 37 927c3fe32c9a2365 70 a4b511d2427e3f73 103 9a94b3039660d3de 
5 caccaf60f2998693 38 427410eb1eacbe4f 71 e2a77bd9898e1326 104 1ed158ecd9d68529 
6 4ea93e4df9558e82 39 18a6fe2878b4d78d 72 65dea88074b941fd 105 0ece52dc8f1c3952 
7 b57cda0316bc1c92 40 436eb84357c5342f 73 8e55b0dc3cee4398 106 86a20a1fffc847e5 
8 623c7496c0d6fb68 41 1b94c23f94c24b3e 74 c14e2add6601ebdc 107 ff1dadc90c09a612 
9 bd7b065e84d852a9 42 d3d831585e585a9c 75 a24f31d25e456e34 108 b896156e08c55f6d 
10 a6cd2e5c6b1a30e7 43 f37e22a1587b9670 76 ad83615ac0e7aeae 109 644dea351c86f456 
11 788d9efc078281b5 44 96a27fa6164197cd 77 81fcc39f84a54a8b 110 29b4b572556f360d 
12 d0cf11a8ff9943e4 45 c21bc4eaf449ac7e 78 d15c7e21fe235136 111 875399911a5a79d1 
13 d04f01c7f3ea8e96 46 bcce8974a35a69d4 79 5f5ac08e5a961b43 112 32ec6f05bc921ba5 
14 5313f574e5d1d2c8 47 7fa98c9b495c2782 80 0cec9543f2a66676 113 ce0fb52c15c61a97 
15 dc8ab4437aad50cf 48 3b64d65041406ffb 81 7c034eba929a8b8e 114 7f4e15212953f03d 
16 66ed63d790921a4d 49 af82f6418c48f7dc 82 c0f4ce12ec988ebb 115 873ca0565bbec3e8 
17 fa351c5183ebda0b 50 13b7d80a170e6ab6 83 5d358844ae5699f9 116 cdfb94c29b3812f1 
18 da694b14554d17c9 51 09dfc1bbf5a51842 84 42e8d74db4919b52 117 aaaea6e308e92f68 
19 0a392fa5de785cd1 52 45b2f2934e2becc4 85 8250d178f5557f8a 118 703cca8345ec51fc 
20 75b1d5de6561d08c 53 f456d827335c90d3 86 532394e648e4f3fc 119 4618bb1b1b33ef0c 
21 bc128db2f22c591e 54 7a2c6ee4672634d8 87 3e2bf92b03691ad8 120 f039732aad11fe46 
22 d19f06a961bc6e36 55 3aa0d9523bbbd398 88 fa9268e710647d5b 121 86d89114ce8de23f 
23 f3f2d208215dda85 56 d578f2aea135f841 89 bbd56f8408e2e651 122 330aedc7e44b8af0 
24 d9a5d482f930b1af 57 9a6635da5227b8e9 90 793c3027eb0c5b8c 123 96d7869edd33e500 
25 fd98b3a189ad9851 58 f40f12a5b07bc3d8 91 7643d2bb11326b87 124 f59cc3b1e9354045 
26 b671a790fb204ae3 59 bbd16b68649b4271 92 4b9ff22bb56211e4 125 ad3db4f4a1aa8433 
27 4e3b9db2a290ec98 60 042753ce1b63f27b 93 aa39e9382f34b664 126 724ece1c833975ea 
28 2ca2afb114df74a2 61 a471d892d743f58d 94 e212d331bfe06a72 127 98516ab5c5303e6e 
29 705ce63837b3616d 62 b6cacf5958204c67 95 1755736ea478f948 128 acf4fd043b90ccb6 
30 679d058ea189a2ee 63 fb7786e2234aa30a 96 59ca19f718a53eaa 129 8d8a1da51be5cec1 
31 8398bab59e3a506c 64 97eb25e4c9f33038 97 f44b30fa21c0a6ed 130 11d0127b77b9427b 
32 181f8aefd8499ad4 65 cd5d27e1802e58f4 98 71f47e295da0855c 131 67c2de1924caa5ed 
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i S[i] i S[i] i S[i] i S[i] 
0 12 33 40 66 60 99 51 

1 45 34 13 67 55 100 32 
2 7 35 14 68 37 101 4 
3 48 36 8 69 50 102 26 
4 14 37 21 70 12 103 46 
5 43 38 6 71 41 104 2 
6 8 39 59 72 7 105 1 
7 54 40 17 73 40 106 38 
8 49 41 5 74 35 107 12 
9 47 42 23 75 45 108 7 
10 37 43 10 76 2 109 41 
11 55 44 32 77 44 110 45 
12 58 45 20 78 4 111 37 
13 32 46 53 79 49 112 24 
14 16 47 3 80 29 113 10 
15 36 48 20 81 12 114 4 
16 13 49 42 82 56 115 2 
17 35 50 1 83 18 116 6 
18 50 51 58 84 59 117 18 
19 58 52 12 85 21 118 9 
20 21 53 30 86 45 119 52 
21 56 54 38 87 60 120 8 
22 4 55 6 88 12 121 57 
23 52 56 23 89 62 122 1 
24 32 57 61 90 59 123 31 
25 19 58 7 91 51 124 35 
26 28 59 12 92 20 125 33 
27 10 60 33 93 42 126 11 
28 63 61 41 94 6 127 16 
29 53 62 17 95 27 128 6 
30 50 63 35 96 1 129 13 
31 27 64 30 97 17 130 15 
32 18 65 3 98 24 131 45 
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KEY GENERATION 
 
 
The initial key is represented by n-bit words of the form (K[0], K[1], ...) and the least 
bit of the word K[0] is the least bit of the key. 
 
1.  Key of the 128 bits 
 
1.1 N=64 (n=16) 
KS[0]=K[4]  KF[0]= K[3] 
KS[1]=K[5]  KF[1]= K[2] 
KS[2]=K[6]  KF[2]= K[1] 
KS[3]=K[7]  KF[3]= K[0] 
KR[i]=K[i mod 8] , i=0,...35 
 
1.2 N = 128 (n=32) 
KS[0]= K[3]  KF[0]= K[1] 
KS[1]= K[2]  KF[1]= K[0] 
KS[2]= K[1]  KF[2]= K[3] 
KS[3]= K[0]  KF[3]= K[2] 
KR[i]=K[i mod 4] , i=0,...67 
 
1.3 N = 256 (n=64) 
KS[0]= K[1]  KF[0]= K[0] 
KS[1]= K[0]  KF[1]= K[1] 
KS[2]= K[1]  KF[2]= K[0] 
KS[3]= K[0]  KF[3]= K[1] 
KR[i]=K[i mod 2] , i=0,...67 
 
 
2.  Key of the 192 bits 
 
2.1 N = 64 (n=16) 
KS[0]= K[4]  KF[0]= K[11] 
KS[1]= K[5]  KF[1]= K[10] 
KS[2]= K[6]  KF[2]= K[9] 
KS[3]= K[7]  KF[3]= K[8] 
KR[i]=K[i mod 12] , i=0,...35 
 
2.2 N = 128  (n=32) 
KS[0]= K[2]  KF[0]= K[5] 
KS[1]= K[3]  KF[1]= K[4] 
KS[2]= K[4]  KF[2]= K[3]  
KS[3]= K[5]  KF[3]= K[2]  
KR[i]=K[i mod 6] , i=0,...67 
 
2.3N = 256  (n=64) 
KS[0]= K[2]  KF[0]= K[1] 
KS[1]= K[1]  KF[1]= K[2] 
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KS[2]= K[0]  KF[2]= K[2] 
KS[3]= K[2]  KF[3]= K[0] 
KR[i]=K[i mod 3] , i=0,...67 
 
 
3. Key of the 256 bits 
 
3.1 N = 64  (n=16) 
KS[0]= K[12]  KF[0]= K[13] 
KS[1]= K[13]  KF[1]= K[12] 
KS[2]= K[14]  KF[2]= K[15] 
KS[3]= K[15]  KF[3]= K[14] 
KR[i]=K[i mod 16] , i=0,...35 
 
3.2 N = 128  (n=32) 
KS[0]= K[4]  KF[0]= K[5] 
KS[1]= K[5]  KF[1]= K[4] 
KS[2]= K[6]  KF[2]= K[7] 
KS[3]= K[7]  KF[3]= K[6] 
KR[i]=K[i mod 8] , i=0,...67 
 
3.3N = 256  (n=64) 
KS[0]= K[3]  KF[0]= K[2] 
KS[1]= K[2]  KF[1]= K[3] 
KS[2]= K[1]  KF[2]= K[0] 
KS[3]= K[0]  KF[3]= K[1] 
KR[i]=K[i mod 4] , i=0,...67 
 
 
If we do not change the constants C[i] for each iteration, then we can compute 
KRC[i]=KR[i]+C[i] in advance and use them instead of computing the sums 
KR[i]+C[i] for each of the iterations.. 
 
 
CHOICE OF OPERATIONS 
 
& - is for Boolean multiplication of two n-bit vectors 
 
| - is for Boolean addition (OR)of two n-bit vectors 
 
^ - is for XOR of two n-bit vectors 
 
+ - is for addition mod2n  of two n-bit integers 
 
 
Steps of the algorithm now are the following. 
 
1.  Initial addition with key 
a = a ^ KS[0], b = b ^ KS[1], c = c ^ KS[2], d = d ^ KS[3] 



 

 13

2. Final addition with key 
a = a  ^ KF[0], b = b ^KF[1], c = c^ KF[2],  d =  d ^  KF[3] 
 
3.  The operations in the main body of the algorithm NUSH. 
 
Let us numerate the operations to be defined. 
For the transformation R we have four operations to be defined 
R(a, b, c, d, k, s) = (a1, b1, c1, d1) 
c1 = c + k                                                                                          (1) 
c1 = c + b                                                                                           (2) 
c1 = c >>> s                                                                                       (3) 
a1 = a + (c1 # d)                                                                                 (4) 
 
b1 = b 
d1 = d 
 
We use the additional operation (5), which also has to be defined. 
R(a, b, c, d, KR[4*i]+C[4*i],S[4*i])                                                  (5) 
 
Let i be the iteration number 
Then, the operation (1) is the operation ^. 
The operation (2) is +. 
The operation (3) is also +. 
The operation (5) is also +. 
 
Choice of the operation (4) is given by the table: 
I Operation (4) i Operation (4) i Operation (4) i Operation (4) 
0 & 16 | 32 | 48 & 
1 | 17 | 33 | 49 & 
2 & 18 & 34 & 50 & 
3 | 19 & 35 | 51 & 
4 | 20 & 36 | 52 & 
5 | 21 & 37 & 53 & 
6 | 22 & 38 | 54 | 
7 | 23 | 39 & 55 & 
8 & 24 & 40 | 56 | 
9 | 25 | 41 & 57 | 
10 | 26 | 42 & 58 | 
11 & 27 | 43 | 59 & 
12 | 28 & 44 | 60 & 
13 & 29 | 45 & 61 & 
14 | 30 & 46 & 62 | 
15 | 31 & 47 & 63 | 
For an iteration with number i more than 63 the operations are the same as for the 
iteration number i(mod 64).  
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Synchronous stream ciphers “NUSH Stream” 
 
 
ALGORITHM 
 
Let SYNC be a Boolean vector of a length LENGTH.  
We suppose that the vector SYNC is known for encryption and decryption procedures. 
The algorithm NUSH Stream can be used as a stream cipher with internal memory of 
LENGTH bits in the following ways. 
 
Varian 1. Use the algorithm NUSH Block with the block length N =LENGTH 
(LENGTH = 64, 128, 256) 
 
To generate COUNT number of N-bit blocks of keystream called GAMMA: 
GAMMA[0], ... , GAMMA[COUNT-1] for encryption or decryption of data we go the 
same way and compute: 
 
SYNC = SYNC ^ NUSH(SYNC) 
For i =0 to COUNT -1 
{ 
 GAMMA[i]= NUSH(SYNC) 
 SYNC = (SYNC + 65257 ) mod 2N 
} 
 
 
Variant2. Use the algorithm NUSH Block with the block length N=LENGTH / 2 
(LENGTH = 128, 256, 512), 
 
Let Т be an N-bit register with N = 4*n, and let the register T consists of the following 
four n-bit words (T[0],T[1],T[2],T[3]), let vector SYNC be the (SYNC[0], SYNC[1]) 
of N-bit words. 
We use register T to modify contents of the registers C[n], C[n+1], C[n+2],C[n+3]. 
 
To generate COUNT number of N-bit blocks of keystream called GAMMA: 
GAMMA[0], . . . , GAMMA[COUNT -1] for encryption and decryption of data we go 
the same way and compute: 
SYNC[0] = SYNC[0] ^ NUSH(SYNC[0]) 
SYNC[1] = SYNC[1] ^ NUSH(SYNC[1]) 
T=SYNC[1] 
For i =0 to COUNT -1 
{ 
 C[n]     = T[0] 
 C[n+1] = T[1] 
 C[n+2] = T[2] 
 C[n+3]= T[3] 
 GAMMA[i]= NUSH(SYNC[0]) 
 SYNC[0] = (SYNC[0] + 65257 ) mod 2N 

 T = (T + 127  ) mod 2N 

} 
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Self-synchronising stream ciphers “NUSH Self-Synchro” 
 
 
ALGORITHM 
 
Let variable LENGTH means the length of the synchronizing vector SYNC (in bits) 
and let LG be the number of bits in output vector used to encrypt data, with LG < N. 
Let GAMMA be the output Boolean vector of LG bits called output encrypting 
sequence. 
 
By HIGH(A) we denote the high LG bits of the N-bit vector А, by >>t we denote a 
shift of an N-bit vector to the least bit by t bits with zeroing the most t bits. 
 
 
Variant 1. Use NUSH Block algorithm with block length N=LENGTH  
(LENGTH = 64,128, 256). 
 
Encryption of a text block ТEXT of the length LTEXT blocks (measured by blocks of 
LG bits each) is the following. 
 
 SYNC = SYNC ^ NUSH(SYNC) 
 For i =0 to LTEXT - 1 

{ 
  GAMMA[i] = HIGH(NUSH(SYNC)) 
  SYNC = SYNC >> LG 
  TEXT[i] = TEXT [i] + GAMMA[i] (this is a bit-wise addition of two 
LG-bit vectors) 

HIGH(SYNC) = TEXT[i] 
} 

 
 
 
Decryption is the following. 
 
 SYNC = SYNC ^ NUSH(SYNC) 
 For i =0 to LTEXT - 1 

{ 
  TEMP = TEXT[i] 
  GAMMA[i]= HIGH(NUSH(SYNC)) 
  SYNC = SYNC >> LG 
  TEXT[i] = TEXT [i] + GAMMA[i] (this is a bit-wise addition of two 
LG-bit vectors) 

HIGH(SYNC) = TEMP 
} 
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Variant 2. Use NUSH Block algorithm with block length N=LENGTH/2,  
LENGTH=(128, 256,512), 
 
Let T be a register of length N (in bits, and N = 4*n) that has a form of a four words 
vector (T[0], T[1], T[2], T[3]) with the N-bit words T[i]. 
We will modify values of C[i] by the contents of the register T.  
 
Let LOW(A) be the least LG bits of the N-bit vector А, and let SYNC=(SYNC[0], 
SYNC[1]) be a vector of two n-bit words, and let V be an N-bit vector.  
 
In this case encryption of a text called ТEXT of the length LTEXT (in LG-bit blocks) 
looks like: 
 
 SYNC[0] = SYNC[0] ^ NUSH(SYNC[0]) 
 SYNC[1] = SYNC[1] ^ NUSH(SYNC[1]) 
 T = SYNC[0] 
 V= SYNC[1] 
 For i =0 to LTEXT - 1 

{ 
 C[n] =T[0] 
 C[n+1] =T[1] 
 C[n+2] =T[2] 
 C[n+3] =T[3] 

  GAMMA[i]= HIGH(NUSH(V)) 
  T = T >>LG 
  HIGH(T) = LOW (V) 
  V = V >>LG 
  TEXT[i] = TEXT [i] + GAMMA[i] (bit-wise sum of two LG-bit 
vectors) 

HIGH(V) = TEXT[i] 
} 
 
 

Decryption cycle looks like 
 
 SYNC[0] = NUSH(SYNC[0]) 
 SYNC[1] = NUSH(SYNC[1]) 
 T = SYNC[0] 
 V= SYNC[1] 
 For i =0 to LTEXT -1 

{ 
 
 TEMP = TEXT[i] 
 C[M =T[0] 
 C[M+1] =T[1] 
 C[M+2] =T[2] 
 C[M+3] =T[3] 

  GAMMA[i]= HIGH(NUSH(V) 
  T = T << LG 
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  HIGH(T) = LOW (V) 
  SYNC = SYNC << LG 
  TEXT[i] = TEXT [i] + GAMMA[i] (bit-wise sum of two LG-bit 
vectors) 

HIGH(V) = TEMP 
} 

 
 
 
4. Message Authentication Codes based upon the algorithm NUSH 
 
 
MAC COMPUTATION 
 
This algorithm is the same as the hash algorithm “NUSH Hash” described below with 
the only difference that it uses nonzero keys. 
 
 
 
5. - 6. Hash functions based on NUSH Block algorithm. 
 
 
TEXT EXTENSION 
 
Initial text called TEXT of the length LENGTH bits to be hashed is extended in the 
following way. 
 
1.   Add to the initial text the final bit equal 1. 
2.  The result text, called TEXT1, extend by zeroes to the text of length multiple N 
3.  The result text called TEXT2, extend by the additional N-bit vector of the binary 

representation of the integer LENGTH (mod 2N). 
4.  The result TEXT3 extend by the N-bit vector of bit-wise sum (XOR) of all the N-

bit vectors of the text TEXT2. 
 
 
DEFIINITIONS 
 
H is an N-bit register (H[0], . . . , H[3]) represented by the four n-bit words. 
 
M is a binary register of length 4*N contains the array (M[0], . . . , M[15]) represented 
by the 16 of n-bit vectors M[i] 
 
T is a binary register of length 4*N represented by the n-bit words (Т[0], . . . , T[15]). 
 
V is an N-bit vector (V[0], V[1], V[2], V[3]) represented by n-bit words. 
 
The initial value of the register Т consists of the constants C[0], . . . , C[15]. The 
initial value of register M formed by the constants C[16], . . . , C[31], the keys KS, 
KF, KR equal zero. 



 

 18

HASHING ALGORITHM 
 
Let sequence TEXT be a text of the length LENGTH represented by the N-bit words 
(TEXT[0], . . . , TEXT[LENGTH-1]) 
Hashing procedure is the following 
 
 For i = 0 to LENGTH -1 
 { 

 For j=0 to L/2-1 
 { 
  C[2*j]      = T[j mod 16] 
  C[2*j+1]  =M[j mod16] 
 } 
 V = TEXT[i] 
 H = NUSH(V) 
 H[0] = H[0] + V[3] 
 H[1] = H[1] + V[2] 
 H[2] = H[2] + V[1] 
 H[3] = H[3] + V[0] 
 For j=15 to 4 
  T[j] = T[j-4] 
 T[0]=H[0] 
 T[1]=H[1] 
 T[2]=H[2] 
 T[3]=H[3] 

  For j=15 to 4 
  M[j] = M[j-4] 
 M[0]=V[0] 
 M[1]=V[1] 
 M[2]=V[2] 
 M[3]=V[3] 
 

 } 
 For i= 0 to 3 
 { 

 For j=0 to L/2-1 
   C[2*j]      = T[j mod 16] 

 H = NUSH(M[i]) 
For j=15 to 4 
 T[j] = T[j-4] 
T[0]=H[0] 
T[1]=H[1] 
T[2]=H[2] 
T[3]=H[3]  

} 
 
 

The final result of this hashing is the value of the register T. If we need hash value of 
the length n*t bits (t <16), then we use the first t of n-bit words of this register. 
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7. Families of Pseudo-random functions “NUSH PRF” 
 
 
DEFINITIONS 
 
X is an N-bit vector, 
K is the initial key of the algorithm NUSH of the length L bits 
 
BASIC TRANSFORMATIONS  
 
NUSH_MAC(X, K) is a binary vector of the length 4*N, that is equal to the result of 
MAC computation for the text X with the key К. 
 
FAMILY OF PSEUDO-RANDOM FUNCTIONS 
 
Let F be a function from the N+L dimensional Boolean vector space VN(2) x VL(2) to 
the 4*N dimensional space V4*N(2) defined as 
 
F(X,K) = NUSH_MAC(X,K)  
 
for all vectors X from VN(2) and keys K from VL(2).  
 
Let FK be the corresponding mapping from VN(2) to V4*N(2) with a fixed key K from 
VL(2). 
 
The set of functions { FK : K from VL(2) } gives a family of pseudorandom functions 
with the arguments from VN(2) and the values in V4*N(2).  
 
To get a function values in the space VS(2) for S < 4*N the high (4*N-S) bits of the 
value FK(X) are ignored. 
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ASYMMETRIC PRIMITIVES 
BASED UPON THE COMPLEXITY OF DISCRETE LOGARITHM 

AND THE BLOCK CIPHER CALLED 
“NUSH” 

 
 

DEFINITIONS 
 
Let P be a prime number of n bits. Montgomery multiplication ⊗ of two integers A, B 
is defined by: 

 

N

NMBAPBABA
2

)2mod)(( •••+•=⊗ , for N ≥ n, N

P
M 2mod1−= . 

 
Division by 2N is just an ignoring of the least N bits of this sum (which really are 
equal zero). For integers A[i] ∈ [0,2ⁿ-1] Montgomery product of the integers 
A[1]⊗A[2]⊗. . . ⊗A[J] is from the interval [0,2N-1], only if N ≥ n+2. 
 
For our cryptographic reasons we modify this operation and denote the new one by ◊: 

 

A ◊◊◊◊ B = 
elsePBA
BifABA n

,
2,

−⊗
<⊗⊗



 , 

 
Where the operation ⊗ is computed with the parameter N = n. 
 
This new binary operation ◊, as well as the Montgomery multiplication ⊗ is 
commutative, but not necessary associative if defined for the integers from the interval 
[1,2n-1].  
 
To form a finite abelian group of the integers with respect to the new operation define 
the new equivalence relation for the integers from the interval [1,2n-1]: 
 

A ≡ B⇔ A-B =








− P

P
0 . 

 
Then we get a finite abelian group with respect to the operation ◊. It is isomorphic to 
group of units *

PF of a finite prime field Fp, but it has different representation by the 
integers mod P, then the standard representation of this field.  
 
The isomorphism ϕ: *

PF → G for the standard presentation of *
PF is given by  

 
ϕ: m → m*2n mod P. 
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In particular, there is an integer a from the interval [1,2n-1], powers of which with 
respect to the operation ◊ form this group G.  
Thus, group exponentiation of an integer a to the power m by ◊ we denote as ><ma . 
 
The elements of group G may be represented by the integers of the interval [1,2n-1] in 
several different ways: some elements have a unique representation, others have two, 
but prime P does not have a presentation of this form at all.  
 
To combine two different representations of a group element in one we define a 
function: 

 

|A| = 




−
<
elsePA

PifAA
,

,
, 

 
That is, A ≡ B⇔ |A| = |B|. 
 
By Ek(M) we denote encryption result of a message M by a key k with NUSH 
algorithm.  
 
The exact algorithm from the class NUSH (block cipher, stream, . . .) and the key 
length may be taken with respect to required security level and environment.  
 
We regard a key as an integer from the interval [1,P-1], ignoring if necessary the 
superfluous bits (at the high end of the number). 
By Dk(F) we denote a decryption result of cryptogram F with a key k. 
 
In binary representation of an integer the least bit is regarded as the first one. 
Concatenation of the texts A, B denoted as A||B. 
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8. Asymmetric encryption schemes “NUSH PKCode”. 
 
 

PUBLIC PARAMETERS OF THE ALGORITHM 

Prime number P of n bits such, that the number 
2

1−P  is also prime. 

Group generator a of group G. 
 

PRIVATE KEY 
 

Uniformly distributed random integer x from [1,P-2]. 
 

PUBLIC KEY 
Group element b = ><xa . 

 

ENCRYPTION 
 

Take at random an integer r from the interval [1,P-1]. 
Compute a group element c = ><ra . 
By the public key b compute a group element d = | ><rb |, the least bits of which will be 
used as an encryption session key for symmetric NUSH algorithm. 
 
Encrypt message M by the key d with NUSH algorithm: 
 

)()(
||

MEMEe rbd ><== . 
 
A cryptogram f equals to concatenation of two vectors: f = c||e. 

 

DECRYPTION 
 

Find in the cryptogram f a header c of n bits and a cipher text e. 
 
With the header c and the private key x find a group element d = |c<x>|, the low bits of 
which form the decryption key for NUSH. 
 
Decrypt this cipher text e by this key d: 
 

M = Dd(e) = )(
||

eD xc >< . 
 
CHOICE OF PARAMETERS 
 
Key length: 64, 128, 256 bits. 
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Prime P has to be taken with respect to complexity evaluation of DLOG problem, 

which is now as high as 
3 2 logloglog

9
32 PP

e  of elementary operations.  
Length n in bits of the prime P has to be multiple of 64, that is the most convenient 
word length for the most recent processors. 
 

PARAMETERS GENERATION 
 

To generate prime number P of n bits and group generator a we use a pseudo random 
sequence of bytes: b0, b1, . . . , from which we take the bytes to generate pseudo 
random numbers. 

 
PRIME NUMBER GENERATION 

 

Generate a decreasing sequence of integers (lengths) n0 > n1 > … nt by the formula:  

n0 = n-1,  

n1 = ]
2

)2(3
[]

2
1

[ 20

8
1000 bbnn +

+
+

; 

… 

ni = ]
2

)2(3
[]

2
1

[ 20

8
122211 −−−− +

+
+ iiii bbnn

; 

nt is the first of integers n[i] =< 32. 

 

To create prime Pt of nt ≤ 32 bits we take the next k = ]
8

7
[

+tn
 bytes of the pseudo 

random sequence bj, bj+1, … bj+k-1, and combine integer u = (bj+bj+128+…+bj+k-

128(k-1)) mod tn2 . 

 

If u < 12 −tn , then 12 −+= tnuu . If u is even, then increase u by 1. 

 

On the interval [u, u+16nt-2] we take the least prime =< tn2 , which is taken as Pt.  

 

Primness of an integer x is proven by a trial division by all the primes up to x .  

If we could not find a prime on this particular interval, we take the next k bytes of 
pseudo random sequence and form the next interval. 

 

Primes Pt-1, . . . , P1 with the lengths nt-1, … , n1 are generated by the following 
algorithm. 
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1. To create prime Pi of ni bits we get the next ]
8

7
[

+
= ink  bytes of pseudo 

random sequence bj, bj+1, … bj+k-1, and construct the integer mod(2**n)  

u = (bj+bj+128+…+bj+k-128(k-1)) mod in2 . 

If u< 12 −in , then 12 −+= inuu .  

If u is even, increase u by 1.  

Compute the integer ][
1+

=
iP
uh . If h is odd, then decrease h by 1. 

 

2. Try all the even numbers m from the interval [h, h+16ni-2] and for each of 
them  

verify the following conditions: 

 

а). mPi+1+1 > 12 −in  

If no, then take the next even number m from the interval. 

 

b). mPi+1+1 < in2  

If no, then go to step 1 and repeat the same computations for the next part of the  

pseudo random sequence. 

 

c). There exists prime number S from the interval [3,251] such that: 

 

(S2-3)m  ≠ 1 mod(mPi+1 +1). 

 

)1mod(1)2( 1
3 1 += +

− +
i

mP mPS i ; 

 

If all three of the conditions а) – c) are true, then put 

 

Pi = mPi+1+1 

and go to generation of the next prime Pi-1. 

 

If for no even number m from the interval [h, h+16ni-2] all the conditions a)-c) 
are true, then go to step 1 and repeat the same computations for the next part of 
the pseudo random sequence. 
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Generation of prime number P is the same as above, but for the step with i =0 we 
have to check the fourth condition of the step 2 above: 

d). )32mod(12 1
22 1 +=+ mPmP  

 

If all of the four statements а) – d) are true , then P = 2mP1+3. 

 

 

CREATION OF GROUP GENERATORS 

 
Take the next k = n/8 bytes of the pseudo random sequence bj, bj+1, . . . , bj+k-1, and 
form a integer a = bj+bj+128+…+bj+k-128(k-1) . 
Then, check the following three conditions: 

 
a ≠ 0 mod P 

 
>

−
<

2
1P

a ◊ 1 ≠ 1 
 

a<2> ◊ 1 ≠ 1. 
 

If not all of them are true, then start the process again. 

 

Integer a, which satisfies to all three of the conditions above is a group generator we 
search for. 
 
 
GENERATION OF PSEUDO RANDOM SEQUENCES 

 
Take the initial random 62 bytes d0, …, d61. 
 
Form the numbers:  
           X0 = d0+256*d1 mod 65257, 

X1 = d2 + 256*d3 mod 65257, 
. . . . . . . . . . . . . . . . . . . . . . . . 
X30 = d60 + 256*d61 mod 65257. 

 
If X0 = 0, then put X0 = 1.  
 
The sequence of the integers Xi  for i = 31, … is generated by the formula: 

 
Xi = Xi-31 – Xi-21 mod 65257. 

 
By the Xi define recursively the following sequences, the last of which is taken as the 
pseudo random sequence we need: 

V0 = X0, 
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Vi = Vi-1 + Xi mod 216; 
 
W0 = X20, 
Wi = 215*Wi-1 + [Wi-1 /2] + Xi+20 mod 216; 
 
H0 = 0; 

Hi  = ]
256

2mod)(
[

16
11010 −++ +⊕ iii HWV

 

 
bi = (Vi+255⊕Wi+255) + Hi+244 mod 256 
 

here [Y] is an integer part of the number Y, and the operation ⊕ is XOR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9. Digital Signature Algorithm “NUSH Sign” based upon the block cipher 
NUSH. 
 
 
DEFINITIONS 
 
Let P be a prime number of n bits. Montgomery multiplication ⊗ of two integers A, B 
is defined by: 
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N

NMBAPBABA
2

)2mod)(( •••+•=⊗ , for N ≥ n, N

P
M 2mod1−= . 

 
Division by 2N is just an ignoring of the least N bits of this sum (which really are 
equal zero). For integers A[i] ∈ [0,2ⁿ-1] Montgomery product of the integers 
A[1]⊗A[2]⊗. . . ⊗A[J] is from the interval [0,2N-1], only if N ≥ n+2. 
 
For our cryptographic reasons we modify this operation and denote the new one by ◊: 

 

A ◊◊◊◊ B = 
elsePBA
BifABA n

,
2,

−⊗
<⊗⊗



 , 

 
Where the operation ⊗ is computed with the parameter N = n. 
 
This new binary operation ◊, as well as the Montgomery multiplication ⊗ is 
commutative, but not necessary associative if defined for the integers from the interval 
[1,2n-1].  
 
To form a finite abelian group of the integers with respect to the new operation define 
the new equivalence relation for the integers from the interval [1,2n-1]: 
 

A ≡ B⇔ A-B =








− P

P
0 . 

 
Then we get a finite abelian group with respect to the operation ◊. It is isomorphic to 
group of units *

PF of a finite prime field Fp, but it has different representation by the 
integers mod P, then the standard representation of this field.  
 
The isomorphism ϕ: *

PF → G for the standard presentation of *
PF is given by  

 
ϕ: m → m*2n mod P. 

 
In particular, there is an integer a from the interval [1,2n-1], powers of which with 
respect to the operation ◊ form this group G.  
Thus, group exponentiation of an integer a to the power m by ◊ we denote as ><ma . 
 
The elements of group G may be represented by the integers of the interval [1,2n-1] in 
several different ways: some elements have a unique representation, others have two, 
but prime P does not have a presentation of this form at all.  
 
To combine two different representations of a group element in one we define a 
function: 
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|A| = 




−
<
elsePA

PifAA
,

,
, 

 
That is, A ≡ B⇔ |A| = |B|. 
We also use prime number Q of 2m bits dividing P-1. For the prime Q we define 
binary operation ◊ in the same way as we did it for the prime P, the last operation we 
denote by ° to distinguish it from the first operation.  
In group G there is a subgroup H of order Q , generator of the subgroup H we denote 
by g.  

For the numbers A < Q, B∈ [0, 22m-1] we define A – B =




+−
≥−−

elseQBA
BifABA

,
0,

. 

 
By the Hk(M) we denote the result of hashing of a text M by the NUSH Hash 
algorithm to a string of k bits. 
If k is less than hash value length, then we take the last (high) k bits of the binary 
representation of the corresponding integer. Remind that the least bit we take as the 
first one. 
 

PUBLIC PARAMETERS OF THE ALGORITHM 
 
Prime number P of n bits. 
Prime number Q of 2m bits, that divides P. 
A generator g of a subgroup H of order Q in group G. 

 
PRIVATE KEY TO SIGN 

 
Uniformly distributed random integer x from the interval [1,Q-1]. 

 

PUBLIC KEY TO VERIFY SIGNATURES 
 

Group element b = >< 1oxg . 
 

DIGITAL SIGNATURE COMPUTATION 
 

Get at random integer r from the interval [1,Q-1]. 
Compute group element с = | ><rg |. 
Compute the first part of signature  

 
d = Hm(M||c) 

 
from the message M or from its hash value H(M). If d = 0, then we start all the 
procedure again. 
By the private key x compute the second pert of the signature 
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e = r – (x°d) mod Q. 

 
Combine the parts of signature to get the signature as a whole 

 
s = d || e. 

 

DIGITAL SIGNATURE VERIFICATION 
 

Split signature s by prefix d of m bits and suffix e. 
If d = 0, then the signature rejected. 
By the public key b compute group element h = | ><eg ◊ ><db |. 
By the signed text M (or by its hash value) verify the equality 

 
d = Hm(M||h); 

CHOICE OF PARAMETERS 
 
Prime number P has to be taken with respect to security level required. This choice is 

defined by the DLOG complexity evaluation from the formula 
3 2 logloglog

9
32 PP

e  of 
elementary operations. The length n of the prime P should be multiple of 64 in regard 
the of next generation processors. 
Prime divisor Q has to have length equal to 2m and multiple 16 with the inequality 

Q ≥ 
3 2 logloglog

9
32 PP

e . 
 

GENERATION OF PARAMETERS 
 

To generate prime P of n bits with a prime divisor Q of 2m bits and group generator a 
we use pseudo random sequence of bytes: b0, b1, . . . , which is used to generate all the 
pseudo random numbers we need. 

 
GENERATION OF PRIME P of n BITS WITH PRIME DIVISOR Q of 2m<n/2 BITS. 

 

Generate two decreasing sequences of integers (lengths of primes) m0 > m1 > … mt 
and n0 > n1 > … > nl by the formulae:  

m0 = 2m,  

m1 = ]
2

)2(3
[]

2
1

[ 20

8
1000 bbmm +

+
+

; 

… 

mi = ]
2

)2(3
[]

2
1

[ 20

8
122211 −−−− +

+
+ iiii bbmm

; 
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n0 = ]
2

)2)(2(3
[]

2
1[ 20

8
122 ++−

++ tt bbmnn ; 

… 

ni = ];
2

)2(3
[]

2
1

[ 20

8
1222211 +++−− +

+
+ ititii bbnn

 

where [x] is for the integer part of x, and mt , nl are the first of numbers =< 32. 

 

Generate primes Qt, Qt-1, …, Q0 = Q of the mt, mt-1, …, m0, bits each and then 
primes Pl, Pl-1, …, P0 of the nl, nl-1, …, n0   bits. 

 

To create prime Qt of nt ≤ 32 bits we take the next k = ]
8

7
[

+tm
 bytes of the pseudo 

random sequence bj, bj+1, … bj+k-1, and the combine an integer u = 
(bj+bj+128+…+bj+k-128(k-1)) mod tm2 . If u< 12 −tm , then we put 12 −+= tmuu . If u is 
even, then increase it by 1.  

 

Then from the interval [u, u+16mt-2] we take the least prime =< tm2 , and take it as 
Qt. Primness testing of x is made by the trial division by the primes up to x . If 
we do not find the primes from the interval, then we take the next k bytes of the 
initial pseudo random sequence and repeat the same procedure. 

 

Primes Qt-1, …, Q0 of mt-1, …, m0 bits are generated by the following algorithm. 

1.To create prime Qi of mi bits we take the next ]
8

7
[

+
= imk  bytes of the pseudo 

random sequence of bytes bj, bj+1, … bj+k-1, and combine the integer u = 
(bj+bj+128+…+bj+k-128(k-1)) mod im2 .  

If u< 12 −im , then put 12 −+= imuu . If u is even, then increase it by 1. 

Compute ][
1+

=
iQ
uR . If R is even, the decrease it by 1. 

 

2. Try the even numbers h from [R, R+16mi-2] and check the conditions: 

а). hQi+1+1 > 12 −im  

If no, then take the next number h. 

b). hQi+1+1 < im2  

If no, then go to step 1 and do the same computations for the new sequence. 

c). There exists prime number S from [3,251] with the following properties: 

(S2-3)h  ≠ 1  mod(hQi+1 +1). 
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)1mod(1)2( 1
3 1 += +

− +
i

hQ hQS i ; 

If a) – c) are true, then put Qi = hQi+1+1 and go to Qi-1. 

If the conditions a)- c) are not true for the h’s from [R, R+16mi-2], then go to step 
1 and do the same computations with the next part of pseudo random sequence. 

 

The sequence of primes Pl, Pl-1, . . . , P0 is generated the same way by the next part 
of the pseudo random sequence b0, b1, …. 

 

The prime P we need may be calculated from the numbers P0  and Q = Q0 in the 
following way. 

1. Take the next ]
8

7[ += nk  bytes of bj, bj+1, … bj+k-1, and integer u = 

(bj+bj+128+…+bj+k-128(k-1)) mod 2n. If u< 2n-1 , then put u = u+2n-1. If u is even, then 

increase u by 1. Calculate ][
0QP

uR = . If R is even, decrease it by 1. 

 

2. Try all the even integers h from [R, R+16n-2] and for each of them check: 

а). hQP0 +1 > 2n-1 

If no, then take the next h. 

b). hQP0 +1 < 2n 

If no, then go to step 1 and do the same for the next part of the pseudo random 
sequence. 

c). There exists prime number S from [3,251] with the following conditions: 

(S2-3)hQ  ≠ 1 mod(hQP0 +1), 

)1mod(1)2( 0
3 0 +=− hQPS hQP ; 

If all the conditions а) – c) are true, then put P = hQP0+1. 

If for all numbers h from [R, R+16n-2] these three conditions are not true 
together, then go to step 1 with the next part of the pseudo random sequence. 

 

SUBGROUP GENERATOR 

 
Take the next k = n/8 bytes of bj, bj+1, …, bj+k-1, and integer u = bj+bj+128+…+bj+k-

128(k-1), compute group element 
>

−
<

= Q
P

ug
1

 and check the conditions: 
• g ≠ 0  
• g ≠ P 
• g ◊ 1 ≠ 1 

If any of them is not true, then repeat the procedure again. 
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Group element g satisfying all three of them is the generator we search for. 
 

PSEUDO RANDOM SEQUENCES 
 

The initial vector consists of the 62 bytes d0, …, d61. 
 
We form the following numbers  
X0 = d0+256*d1 mod 65257,  
X1 = d2 + 256*d3 mod 65257, …, X30 = d60 + 256*d61 mod 65257.  
If X0 = 0, put X0 = 1.  
The sequence Xi , i = 31, … is computed by the rule: Xi = Xi-31 – Xi-21 mod 65257. 
 
We define from the sequence Xi the following sequences, last of which we take as the 
pseudo random sequence we need. 

V0 = X0, 
Vi = Vi-1 + Xi mod 216; 
 
W0 = X20, 
Wi = 215*Wi-1 + [Wi-1 /2] + Xi+20 mod 216; 
 
H0 = 0; 

Hi  = ]
256

2mod)(
[

16
11010 −++ +⊕ iii HWV

 

 
bi = (Vi+255⊕Wi+255) + Hi+244 mod 256. 
 
 
 
 
 
 
 
 
 
 

10. Asymmetric identification schemes “NUSH IDS” based on the block cipher 
NUSH 

 
 

DEFINITIONS 
 
Let P be a prime number of n bits. Montgomery multiplication ⊗ of two integers A, B 
is defined by: 

 

N

NMBAPBABA
2

)2mod)(( •••+•=⊗ , for N ≥ n, N

P
M 2mod1−= . 
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Division by 2N is just an ignoring of the least N bits of this sum (which really are 
equal zero). For integers A[i] ∈ [0,2ⁿ-1] Montgomery product of the integers 
A[1]⊗A[2]⊗. . . ⊗A[J] is from the interval [0,2N-1], only if N ≥ n+2. 
 
For our cryptographic reasons we modify this operation and denote the new one by ◊: 

 

A ◊◊◊◊ B = 
elsePBA
BifABA n

,
2,

−⊗
<⊗⊗



 , 

 
Where the operation ⊗ is computed with the parameter N = n. 
 
This new binary operation ◊, as well as the Montgomery multiplication ⊗ is 
commutative, but not necessary associative if defined for the integers from the interval 
[1,2n-1].  
 
To form a finite abelian group of the integers with respect to the new operation define 
the new equivalence relation for the integers from the interval [1,2n-1]: 
 

A ≡ B⇔ A-B =








− P

P
0 . 

 
Then we get a finite abelian group with respect to the operation ◊. It is isomorphic to 
group of units *

PF of a finite prime field Fp, but it has different representation by the 
integers mod P, then the standard representation of this field.  
 
The isomorphism ϕ: *

PF → G for the standard presentation of *
PF is given by  

 
ϕ: m → m*2n mod P. 

 
In particular, there is an integer a from the interval [1,2n-1], powers of which with 
respect to the operation ◊ form this group G.  
Thus, group exponentiation of an integer a to the power m by ◊ we denote as ><ma . 
 
The elements of group G may be represented by the integers of the interval [1,2n-1] in 
several different ways: some elements have a unique representation, others have two, 
but prime P does not have a presentation of this form at all.  
 
To combine two different representations of a group element in one we define a 
function: 

 

|A| = 




−
<
elsePA

PifAA
,

,
, 
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That is, A ≡ B⇔ |A| = |B|. 
 
We also use prime number Q of 2m bits dividing P-1.  
For the prime Q we define binary operation like ◊ in the same way as we did it for the 
prime P, the last operation we denote by ° to distinguish it from the operation defined 
for the prime P.  
In the group G there is a subgroup H of order Q , generator of the subgroup H we 
denote by g.  

For the numbers A < Q, B∈ [0, 22m-1] we define A – B =




+−
≥−−

elseQBA
BifABA

,
0,

. 

By the Hk(M) we denote the result of hashing of a text M by the NUSH Hash 
algorithm to a string of k bits. 
If k is less than hash value length, then we take the last (high) k bits of the binary 
representation of the corresponding integer. Remind that the least bit we take as the 
first one. 
 

PUBLIC PARAMETERS OF THE ALGORITHM 
 
Prime number P of n bits. 
Prime number Q of 2m bits, that divides P. 
A generator g of a subgroup H of order Q in group G. 
 

PRIVATE IDENTIFICATION KEY 
 

Uniformly distributed random integer x from [1,Q-1]. 
 

PUBLIC IDENTIFICATION KEY 
 

Group element b = >< 1oxg . 
 

IDENTIFICATION 
 

1. First round 
 
Prover generates random integer r from [1,Q-1] and computes 
 

|)(| ><= r
m gHс , 

 
which he sends to verifier. 

 
2. Second round 

 
Verifier generates random integer k from [0,2t-1] and sends it to prover. 
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Here t < 2m is reliability level. 
 

3. Third round 

 
Prover computes 

)||( kcHxrd mo−=  mod Q 
and sends it to verifier. 
 
Verifier check that 
 

Hm(| g<d>◊ )||( kcHmb |) = c. 
 

CHOICE OF PARAMETERS 
 
Prime number P has to be taken with respect to security level required. This choice is 

defined by the DLOG complexity evaluation from the formula 
3 2 logloglog

9
32 PP

e  of 
elementary operations. The length n of the prime P should be multiple of 64 in regard 
the of next generation processors. 
Prime divisor Q has to have length equal to 2m and multiple 16 with the inequality 

Q ≥ 
3 2 logloglog

9
32 PP

e . 
 

GENERATION OF PARAMETERS 
 

To generate prime P of n bits with a prime divisor Q of 2m bits and group generator a 
we use pseudo random sequence of bytes: b0, b1, . . . , which is used to generate all the 
pseudo random numbers we need. 

 
GENERATION OF PRIME P of n BITS WITH PRIME DIVISOR Q of 2m<n/2 BITS. 

 

Generate two decreasing sequences of integers (lengths of primes) m0 > m1 > … mt 
and n0 > n1 > … > nl by the formulae:  

m0 = 2m,  

m1 = ]
2

)2(3
[]

2
1

[ 20

8
1000 bbmm +

+
+

; 

… 

mi = ]
2

)2(3
[]

2
1

[ 20

8
122211 −−−− +

+
+ iiii bbmm

; 

n0 = ]
2

)2)(2(3
[]

2
1[ 20

8
122 ++−

++ tt bbmnn ; 

… 
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ni = ];
2

)2(3
[]

2
1

[ 20

8
1222211 +++−− +

+
+ ititii bbnn

 

where [x] is for the integer part of x, and mt , nl are the first of numbers =< 32. 

 

Generate primes Qt, Qt-1, …, Q0 = Q of the mt, mt-1, …, m0, bits each and then 
primes Pl, Pl-1, …, P0 of the nl, nl-1, …, n0   bits. 

 

To create prime Qt of nt ≤ 32 bits we take the next k = ]
8

7
[

+tm
 bytes of the pseudo 

random sequence bj, bj+1, … bj+k-1, and the combine an integer u = 
(bj+bj+128+…+bj+k-128(k-1)) mod tm2 . If u< 12 −tm , then we put 12 −+= tmuu . If u is 
even, then increase it by 1.  

 

Then from the interval [u, u+16mt-2] we take the least prime =< tm2 , and take it as 
Qt. Primness testing of x is made by the trial division by the primes up to x . If 
we do not find the primes from the interval, then we take the next k bytes of the 
initial pseudo random sequence and repeat the same procedure. 

 

Primes Qt-1, …, Q0 of mt-1, …, m0 bits are generated by the following algorithm. 

1.To create prime Qi of mi bits we take the next ]
8

7
[

+
= imk  bytes of the pseudo 

random sequence of bytes bj, bj+1, … bj+k-1, and combine the integer u = 
(bj+bj+128+…+bj+k-128(k-1)) mod im2 .  

If u< 12 −im , then put 12 −+= imuu . If u is even, then increase it by 1. 

Compute ][
1+

=
iQ
uR . If R is even, the decrease it by 1. 

 

2. Try the even numbers h from [R, R+16mi-2] and check the conditions: 

а). hQi+1+1 > 12 −im  

If no, then take the next number h. 

b). hQi+1+1 < im2  

If no, then go to step 1 and do the same computations for the new sequence. 

c). There exists prime number S from [3,251] with the following properties: 

(S2-3)h  ≠ 1  mod(hQi+1 +1). 

)1mod(1)2( 1
3 1 += +

− +
i

hQ hQS i ; 

If a) – c) are true, then put Qi = hQi+1+1 and go to Qi-1. 
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If the conditions a)- c) are not true for the h’s from [R, R+16mi-2], then go to step 
1 and do the same computations with the next part of pseudo random sequence. 

 

The sequence of primes Pl, Pl-1, . . . , P0 is generated the same way by the next part 
of the pseudo random sequence b0, b1, …. 

 

The prime P we need may be calculated from the numbers P0  and Q = Q0 in the 
following way. 

1. Take the next ]
8

7[ += nk  bytes of bj, bj+1, … bj+k-1, and integer u = 

(bj+bj+128+…+bj+k-128(k-1)) mod 2n. If u< 2n-1 , then put u = u+2n-1. If u is even, then 

increase u by 1. Calculate ][
0QP

uR = . If R is even, decrease it by 1. 

 

2. Try all the even integers h from [R, R+16n-2] and for each of them check: 

а). hQP0 +1 > 2n-1 

If no, then take the next h. 

b). hQP0 +1 < 2n 

If no, then go to step 1 and do the same for the next part of the pseudo random 
sequence. 

c). There exists prime number S from [3,251] with the following conditions: 

(S2-3)hQ  ≠ 1 mod(hQP0 +1), 

)1mod(1)2( 0
3 0 +=− hQPS hQP ; 

If all the conditions а) – c) are true, then put P = hQP0+1. 

If for all numbers h from [R, R+16n-2] these three conditions are not true 
together, then go to step 1 with the next part of the pseudo random sequence. 

 

SUBGROUP GENERATOR 

 
Take the next k = n/8 bytes of bj, bj+1, …, bj+k-1, and integer u = bj+bj+128+…+bj+k-

128(k-1), compute group element 
>

−
<

= Q
P

ug
1

 and check the conditions: 
• g ≠ 0  
• g ≠ P 
• g ◊ 1 ≠ 1 

If any of them is not true, then repeat the procedure again. 

Group element g satisfying all three of them is the generator we search for. 
 

PSEUDO RANDOM SEQUENCES 
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The initial vector consists of the 62 bytes d0, …, d61. 
 
We form the following numbers  
X0 = d0+256*d1 mod 65257,  
X1 = d2 + 256*d3 mod 65257, …, X30 = d60 + 256*d61 mod 65257.  
If X0 = 0, put X0 = 1.  
The sequence Xi , i = 31, … is computed by the rule: Xi = Xi-31 – Xi-21 mod 65257. 
 
We define from the sequence Xi the following sequences, last of which we take as the 
pseudo random sequence we need. 

V0 = X0, 
Vi = Vi-1 + Xi mod 216; 
 
W0 = X20, 
Wi = 215*Wi-1 + [Wi-1 /2] + Xi+20 mod 216; 
 
H0 = 0; 

Hi  = ]
256

2mod)(
[

16
11010 −++ +⊕ iii HWV

 

 
bi = (Vi+255⊕Wi+255) + Hi+244 mod 256. 
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