
The LILI-128 Keystream Generator

Abstract

The LILI-128 keystream generator is a LFSR based synchronous stream cipher
with a 128 bit key. The design offers large period and linear complexity, and
is resistant to currently known styles of attack. LILI is simple to implement in
hardware or software.

1 Introduction

Many keystream generator designs are based on shift registers, both for the simplicity and
speed of LFSR implementation in hardware and for the long period and good statistical
properties LFSR sequences possess. To make use of the good keystream properties while
avoiding the inherent linear predictability of LFSR sequences, many constructions intro-
duce nonlinearity, by applying a nonlinear function to the outputs of regularly clocked
LFSRs or by irregular clocking of the LFSRs [13].

However, keystream generators using regularly clocked LFSRs are susceptible to corre-
lation attacks, including fast correlation attacks, a concept first introduced in [11]. In
a fast correlation attack, the initial states of the component shift registers are recon-
structed from a known segment of the generator output sequence, without performing a
blind search over all possible shift register initial states. As a means of achieving immu-
nity to these correlation attacks, keystream generators consisting of irregularly clocked
LFSRs were proposed. These keystream generators are also susceptible to certain cor-
relation attacks, such as the generalised correlation attack proposed in [6]. However, no
fast correlation attacks on these generators have been published.

As correlation attacks have been successful against keystream generators based on the
single design principles of either a nonlinear function of regularly clocked LFSR se-
quences [16, 14] or on irregular clocking of LFSRs [6, 17], both of these approaches
are combined for the LILI keystream generators. LILI-128 is a specific cipher from he
LILI family of keystream generators, which was first introduced in [19]. The use of both
nonlinear functions and irregular clocking is not novel, having been employed in previous
constructions such as ORYX [20] and SOBER [12]. Weaknesses in the design of ORYX
resulted in the provision of a very low level of cryptographic security [21]. Some at-
tacks on the SOBER proposal have also been identified [3]. Although the design for the
LILI-128 keystream generator described in this paper is conceptually simple, it produces
output sequences with provable properties with respect to basic cryptographic security
requirements and also provides security against currently known cryptanalytic attacks.
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LILI-128 is a specific cipher from he LILI family of keystream generators, which was first
introduced in [19].

We now briefly summarise the security claims for LILI-128. Firstly, the period at around
2128 exceeds the length of any practical plaintext. Secondly, the linear complexity is
conjectured to be at least 268, so that at least 269 consecutive bits of known plaintext
are required for the Berlekamp-Massey [10] attack. This is an infeasible amount of text
to collect. Thirdly, we conjecture that the complexity of divide and conquer attacks on
LILI are at least 2112 operations, requiring at least 1700 known keystream bits. This is
a conservative estimate, and the true level of security may be higher. Taken together,
these results indicate that LILI-128 is a secure synchronous stream cipher.

2 Description of LILI-128 Keystream Generator

The LILI-128 keystream generator is a simple and fast keystream generator that uses two
binary LFSRs and two functions to generate a pseudorandom binary keystream sequence.
The structure of the LILI keystream generators is illustrated in Figure 1. The components
of the keystream generator can be grouped into two subsystems based on the functions
they perform: clock control and data generation. The LFSR for the clock-control sub-
system is regularly clocked. The output of this subsystem is an integer sequence which
controls the clocking of the LFSR within the data-generation subsystem. If regularly
clocked, the data-generation subsystem is a simple nonlinearly filtered LFSR [13] (non-
linear filter generator).

The state of LILI-128 is defined to be the contents of the two LFSRs. The functions
fc and fd are evaluated on the current state data, and the feedback bits are calculated.
Then the LFSRs are clocked and the keystream bit is output. At initialisation, the 128
bit key is used directly to form the initial values of the two shift registers, from left to
right, the first 39 bits in LFSRc then the remaining 89 bits in LFSRd. In the rare event
that either register is initialised as all zeroes, then that key is declared invalid. All valid
keys produce a different keystream and there are no known weak keys.

The LILI-128 generator may be viewed as a clock-controlled nonlinear filter generator.
Such a system, with the clock control provided by a stop-and-go generator, was examined
in [4]. However, the use of stop-and-go clocking produces repetition of the nonlinear
filter generator output in the keystream, which may permit attacks. This system is an
improvement on that proposal, as stop-and-go clocking is avoided. For LILI-128, LFSRd

is clocked at least once and at most four times between the production of consecutive
keystream bits.
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Figure 1: Overview of LILI keystream generators.

2.1 Clock Control Subsystem

The clock-control subsystem of LILI-128 uses a pseudorandom binary sequence produced
by a regularly clocked LFSR, LFSRc, of length 39 and a function, fc, operating on the
contents of k = 2 stages of LFSRc to produce a pseudorandom integer sequence, c =
{c(t)}∞t=1. The feedback polynomial of LFSRc is chosen to be the primitive polynomial

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1

and the initial state of LFSRc is never allowed to be the all zero state. It follows that
LFSRc produces a maximum-length sequence of period Pc = 239 − 1.

To remove any possible ambiguity, we now present the recursion that corresponds to the
feedback polynomial for LFSRc. Let the stages of LFSRc be labelled s[0], s[1], · · · , s[38]
from left to right. Now, let the LFSR shift left. Then at time t, we have the following
formula to calculate the feedback bit:

s[39 + t] = s[37 + t]⊕ s[25 + t]⊕ s[24 + t]⊕ s[22 + t]⊕ s[8 + t]⊕ s[6 + t]⊕ s[4 + t]⊕ s[t]

where ⊕ indicates the exclusive-or operation on bits (equivalent to addition modulo 2).

At time instant t, the contents of stages 12 and 20 of LFSRc are input to the function
fc and the output of fc is an integer c(t), such that c(t) ∈ {1, 2, 3, 4}. The function fc is
given by

fc(x12, x20) = 2(x12) + x20 + 1.

This function was chosen to be a bijective mapping so that the distribution of integers
c(t) is close to uniform. Thus c = {c(t)}∞t=1 is a periodic integer sequence with period
equal to Pc = 239 − 1.
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2.2 Data Generation Subsystem

The data-generation subsystem of LILI-128 uses the integer sequence c produced by the
clock-control subsystem to control the clocking of a binary LFSR, LFSRd, of length
Ld = 89. The contents of a fixed set of n = 10 stages of LFSRd are input to a specially
chosen Boolean function, fd. The truth table for this function is given in the Appendix.
The binary output of fd is the keystream bit z(t). After z(t) is produced, The two LFSRs
are clocked and the process repeated to form the keystream z = {z(t)}∞t=1.

The feedback polynomial of LFSRd is chosen to be the primitive polynomial

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x + 1

and the initial state of LFSRd is never the all zero state. Then LFSRd produces a
maximum-length sequence of period Pd = 289 − 1, which is a Mersenne Prime.

To remove any possible ambiguity, we now present the recursion that corresponds to the
feedback polynomial for LFSRd. Let the stages of LFSRd be labelled u[0], u[1], · · · , u[88]
from left to right. Now, let the LFSR shift left. Then at time t, we have the following
formula to calculate the feedback bit:

u[89 + t] = u[88 + t]⊕u[50 + t]⊕u[47 + t]⊕u[36 + t]⊕u[34 + t]⊕u[9 + t]⊕u[6 + t]⊕u[t]

where ⊕ indicates the exclusive-or operation on bits (equivalent to addition modulo 2).

The 10 inputs to fd are taken from LFSRd positions according to this full positive
difference set: (0,1,3,7,12,20,30,44,65,80)(see [9]). The function fd has been chosen to be
balanced, highly nonlinear and to satisfy the third order of correlation immunity relative
to the positions of 10 stages used as inputs to fd. It was constructed following the
technique recently introduced in [15]).

If we consider LFSRd as regularly clocked, then the data-generation subsystem is simply
a nonlinear filter generator (NLFG). The output of a regularly clocked nonlinear filter
generator is a periodic binary sequence, g = {g(i)}∞i=1, with period dividing Pd = 289− 1.
The following basic result is proved in [18].

Theorem 1 Let LFSRd have a primitive feedback polynomial and a nonzero initial state.
If fd is balanced, or if Pd is a prime and fd is not a constant function (zero or one), then
the period of g is Pd.

As the Boolean function fd selected for LILI-128 is balanced, the period of the regularly
clocked nonlinearly filtered LFSR sequence g is Pg = 289 − 1. Considering the irregular
clocking of LFSRd, the keystream z may be viewed as an irregularly decimated version
of the nonlinearly filtered LFSRd sequence g, with the decimation under the control of
LFSRc, so that z(t) = g(

∑t
j=1 c(j)).

4



3 Keystream Properties

Several properties of pseudorandom binary sequences are considered basic security re-
quirements: a sequence that does not possess these properties is generally considered
unsuitable for cryptographic applications. Basic requirements for pseudorandom binary
sequences are a long period, high linear complexity and good statistics regarding the
distribution of zeroes and ones in the output.

High linear complexity avoids an attack using the Berlekamp-Massey [10] algorithm,
which requires a length of keystream only twice the linear complexity of the sequence
to produce the entire keystream. A bias in the distribution of zeroes and ones in the
keystream can be used to reduce the unpredictability of the keystream sequence. These
basic requirements are addressed with respect to the LILI-128 keystream generator in the
remainder of this section.

3.1 Period

The maximum value for the period of z and the conditions under which this value is
obtained are given in the following theorem. The result is easily obtained from Theorem 1
and the application of a result regarding the period of irregularly decimated sequences
from [2].

Theorem 2 Let both LFSRc and LFSRd have primitive feedback polynomials and nonzero
initial states. If 2Ld − 1 is a prime and fd is not a constant function or if fd is balanced
and 2Lc−1(2k + 1)− 1 is relatively prime to 2Ld − 1 (provided that fc(0, . . . , 0) = 1), then
the period of the output sequence z is given by the product Pz = (2Lc − 1)(2Ld − 1).

Proof The output sequence z is a decimated version of g. Under the conditions of the
theorem, according to Theorem 1, the period of g is Pd = 2Ld − 1. Also, as LFSRc is
regularly clocked, the period of c is Pc = 2Lc−1. Since all states, except the all zero state,
occur once in a period of LFSRc, for fc as given, each of the integers 2, . . . , 2k occurs
2Lc−k times in one period of c, and 1 occurs 2Lc−k times. Therefore the length of the regu-
larly clocked data sequence, g, spanned by one period of c is

∑Pc
t=1 c(t) = 2Lc−1(2k +1)−1.

The period of z then follows from a result from [2]. 2

Hence, LILI-128 has a period of (239 − 1)(289 − 1) ≈ 2128 Note that this period implies
that each distinct initial state results in the production of a distinct keystream, avoiding
the reduction in keyspace which commonly occurs in keystream generators using irregular
clocking, where several initial states produce the same keystream [17, 12].
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3.2 Linear Complexity

For the proposed keystream generator, the output of a nonlinear filter generator with
period Pd = 289− 1 or a divisor of Pd is non-uniformly decimated by means of a sequence
with period Pc = 239 − 1. In [5], the following upper bound on the linear complexity of
irregularly decimated maximum-length sequences is given. Let the length of the LFSR be
denoted L. When a maximum-length sequence of period Pd is non-uniformly decimated
by means of a decimating sequence of period Pc, if the sum modulo Pd of Pc successive
values of the decimating sequence equals S, then the decimated sequence has a maximum
linear complexity of L · Pc only if the multiplicative order of 2 modulo Pd/ gcd(Pd, S) is
equal to L. Note that this condition is satisfied if gcd(Pd, S) = 1. In [5] it is also shown
that if the decimating sequence is randomly chosen, then the probability that maximum
linear complexity is obtained can be made arbitrarily close to one for appropriately chosen
L and Pc.

For a non-uniformly decimated nonlinearly filtered LFSR sequence, the maximal attain-
able linear complexity is L′ ·Pc, where L′ is the linear complexity of the (regularly clocked)
nonlinearly filtered sequence. It is known (e.g., see [13]) that L′ depends on the filter
function and on the positions of stages used for its inputs and that L′ is very likely to
be lower bounded by

(L
r

)

, where r is the nonlinear algebraic order of the filter function.
Accordingly, our conjecture is that the linear complexity of a non-uniformly decimated
nonlinearly filtered sequence is very likely to be lower-bounded by

(L
r

)

· Pc. As a conse-
quence, it is also lower-bounded by L · Pc.

To investigate this conjecture, computer simulations were performed for other members
of the LILI family pof keystream generators as described in [19], with various small shift
register lengths. In each case, a nonlinear 3-input balanced nonlinear Boolean function,
with r = 2, was used as a nonlinear combining function, and the stages of LFSRd used
for inputs to the filter function were selected to form a full positive difference set. That
is, the distances between any two stages are distinct. For each keystream generator,
a keystream sequence of length greater than the maximum period of the keystream was
produced and the period, Pz, and linear complexity, Lz, of the sequence were determined.
These values are recorded in Table 1, and support both the theorem regarding the period
and the conjecture regarding the linear complexity.

3.3 Statistical Properties of Output Sequence

Under regular clocking, one period of the sequence d produced by LFSRd when regularly
clocked contains 2Ld−1 − 1 zeroes and 2Ld−1 ones. For a balanced filter function such
that fd(0, . . . , 0) = 0, a segment of length 2Ld − 1 of the regularly clocked nonlinear
filter generator output sequence g has the same distribution of zeroes and ones as d.
When the clocking of LFSRd is under the control of LFSRc and when the period of z
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k = 2 k = 3
Lc Ld Pz Lz

(Ld
2

)

· Pc Lc Ld Pz Lz
(Ld

2

)

· Pc

3 4 105 64 42 4 4 225 150 90
3 6 441 147 105 4 6 945 303 225
3 7 889 196 147 4 7 1905 420 315
3 12 28665 546 462 4 12 61425 1170 990
7 4 1905 1001 762 6 4 945 503 378
7 6 8001 2667 1905 7 6 8001 2373 1905
7 7 16129 3556 2667 7 7 16129 3556 2667

Table 1: Period and linear complexity of binary sequences produced by LILI keystream
generators.

is (2Lc − 1)(2Ld − 1), then each pair of LFSRc and LFSRd states occurs exactly once
in a period of z. Therefore one period of z contains (2Lc − 1)(2Ld−1 − 1) zeroes and
(2Lc − 1)2Ld−1 ones, thus maintaining the same proportion of zeroes and ones as in d.
The ratio of the number of ones to the number of zeroes is given by (2Ld−1)

(2Ld−1−1) . Note
that this value approaches unity for large values of Ld, as for example in LILI-128 where
Ld = 89.

3.4 Throughput Rate

In producing the keystream, LFSRd is clocked c(t) times before z(t) is produced. Thus
LFSRd is clocked at least once and at most 4 times before each keystream bit is produced,
with the distribution of values of c(t) almost uniform. Over one period of c, LFSRd

is clocked
∑Pc

t=1 c(t) = (5 ∗ 238)− 1 times so, on average, LFSRd is clocked (5∗238)−1
239−1

times per keystream symbol produced. This is approximately 5
2 . Thus, for large Lc, the

throughput rate is approximately 2
5 of the rate at which LFSRd is clocked. However

a hardware implementation can use multiple copies of the feedback function to allow
the irregular clocking to be performed more efficiently. We suggest that, for example,
to achieve the the maximum throughput rate of 1, instead of irregularly clocking the
shift register a given number of steps, multiple copies of the feedback function can be
maintained, one for each possible value of c(t). In hardware, the irregular clocking can
then be performed in one step only. Thus there is a tradeoff between hardware space and
timing regularity. Note that the use of either a buffer or parallel-feedback method would
provide resistance against timing attacks.
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4 Possible Attacks

A number of attacks should be considered with respect to the LILI-128 keystream gener-
ator. These are known-plaintext attacks conducted under the standard assumption that
the cryptanalyst knows the complete structure of the generator, and the secret key is only
the initial states of the component shift registers. For all attacks, the given keystream
is viewed as an irregularly decimated version of a nonlinearly filtered LFSRd sequence,
with the decimation under the control of LFSRc. For keystream generators based on
more than one LFSR where the key consists of the initial states of the LFSRs, such as
the LILI-128 generator, divide-and-conquer attacks on individual LFSRs should be con-
sidered. We deal firstly with divide-and-conquer attacks that target LFSRd, and then
with those attacks that target LFSRc. We shall describe these attacks in relation to the
general LILI keystream generator as described in [19]. In Section 5 we describe how such
attacks are not feasible for LILI-128.

4.1 Attacks on Irregularly Clocked LFSRd

Suppose a keystream segment of length N is known, say {z(t)}N
t=1. This is a decimated

version of a segment of length M of the underlying regularly clocked nonlinearly filtered
LFSRd sequence, g = {g(i)}M

i=1, where M ≥ N . The objective of correlation attacks
targeting LFSRd is to recover the initial state of LFSRd by identifying the segment
{g(i)}M

i=1 that {z(t)}N
t=1 was obtained from through decimation, using the correlation be-

tween the regularly clocked sequence and the keystream, without knowing the decimating
sequence.

For clock-controlled shift registers with constrained clocking, (so that there is a fixed
maximum number of times the data shift register may be clocked before an output bit
must be produced), correlation attacks based on a constrained Levenshtein distance and
on a probabilistic measure of correlation are proposed in [6] and [7], respectively, and
further analysed in [8]. These attacks could be adapted to be used as the first stage of a
divide-and-conquer attack on LILI. The rest of this section describes how such an attack
would be performed.

For a candidate initial state of LFSRd, say {d̂(i)}Ld
i=1, use the known LFSRd feedback

function to generate a segment of the LFSRd sequence, {d̂(i)}M+Ld−1
i=1 , for some M ≥ Ld.

Then use the known filter function fd to generate a segment of length M of the output
of the nonlinear filter generator when regularly clocked, {ĝ(i)}M

i=1. A measure of corre-
lation between {ĝ(i)}M

i=1 and {z(t)}N
t=1 is calculated, (either the Constrained Levenshtein

Distance (CLD) [6], or the Probabilistic Constrained Edit Distance (PCED) [7]) and the
process repeated for all LFSRd initial states.
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In either case, the attack is considered successful if only a few initial states are identi-
fied. As the correlation attack based on the PCED takes into account the probability
distribution of the decimating sequence, it is statistically optimal and may be successful
in cases where the embedding attack based on the CLD is not, such as for larger values
of k. The value of M is a function of N and k. If M = 2k ×N , then the probability of
not identifying the correct LFSRd initial state is zero.

The second stage of a divide-and-conquer attack on the generator is the recovery of the
initial state of the second shift register.

This can be performed as in [17]. From the calculation of the edit distance (either CLD
or PCED) between {ĝ(i)}M

i=1 and {z(t)}N
t=1, form the edit distance matrix, and use this to

find possible edit sequences. From each possible edit sequence, form a candidate integer
sequence {ĉ(t)}N

t=1. From this, the underlying binary sequence {â(t)}N
t=1 and hence the

candidate initial state of LFSRc can be recovered. To determine whether the correct
initial states of both LFSRs have been recovered, use both candidate initial states to
generate a candidate keystream and compare it with the known keystream segment.

To conduct either of these correlation attacks requires exhaustive search of LFSRd initial
states. For each LFSRd initial state, the attacks require calculation of either the CLD
or the PCED, with computational complexity O(N(M −N)). Finally, further computa-
tional complexity is added in finding the corresponding LFSRc initial state. For either
correlation attack, the minimum length of keystream required for a successful attack on
LFSRd is linear in Ld, but exponential or even super-exponential in 2k (see [8]). For
k = 2, the required keystream length [23] is prohibitively large.

4.2 Attacks Targeting LFSRc

A possible approach to attacking the proposed generator is by targeting the clock-control
sequence produced by LFSRc. Guess an initial state of LFSRc, say {â(t)}Lc

t=1. Use
the known LFSRc feedback function and the function fc to generate the decimating
sequence {ĉ(t)}N

t=1 for some N ≥ Lc. Then position the known keystream bits {z(t)}N
t=1

in the corresponding positions of {ĝ(i)}∞i=1, the nonlinear filter generator output when
regularly clocked. At this point we have some (not all consecutive) terms in the nonlinear
filter generator output sequence and are trying to reconstruct a candidate initial state
for LFSRd. The attack could then proceed in several ways.

4.2.1 Consistency Attack

One method is to use the known filter function fd to write equations relating terms
in the underlying LFSRd sequence to terms in {ĝ(i)}∞i=1. Reject the guessed initial
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state {ĉ(t)}Lc
t=1 when the equations are inconsistent. This is a generalisation of the linear

consistency test [22]. The feasibility of such an approach depends on the number of inputs
to fd, on the tap positions producing these inputs and on some properties of fd such as its
nonlinearity and order of correlation immunity. For example, this attack is complicated
if the tap positions are chosen according to a full positive difference set (see [9]).

4.2.2 Attacks on Regularly Clocked LFSRd

An alternative approach would be to use a correlation attack on the nonlinear filter
generator [14] to recover a linear transform of the LFSRd sequence, and then recover the
LFSRd initial state. However, this is complicated by not having consecutive terms in the
regularly clocked nonlinear filter generator sequence. The feasibility of such an attack
primarily depends on the use of a feedback polynomial of LFSRd that is of low weight
or has low weight polynomial multiples and on the nonlinearity of fd.

An alternative correlation attack on a (regularly clocked) nonlinear filter generator which
could be applied at this point is the conditional correlation attack [1], with a difference
that the known output bits are not consecutive. The feasibility of such an attack depends
on the number of inputs to the filter function and on the tap positions. The use of a full
positive difference set for the tap positions, as suggested in [9], and of a filter function
with correlation-immunity order greater than zero renders this attack infeasible.

Finally, the inversion attack [9] can be adapted to deal with the case of non-consecutive
output bits, but the associated branching process is then supercritical, because more than
one bit has to be guessed at a time. As a consequence, the computational complexity
may be prohibitively high even if the tap positions are not spread across the LFSRd

length.

Applying any of these approaches requires exhaustive search over the LFSRc initial
state space and additional computation for each candidate LFSRc state. However, as
only some (not all consecutive) terms in the nonlinear filter generator output sequence
are available, the required additional computation appears to be prohibitive. This is
especially true for highly nonlinear filter functions with a large number of inputs and
sufficiently high correlation-immunity order, for the tap positions chosen according to a
full positive difference set and for the feedback polynomial of LFSRd not having low-
weight polynomial multiples of relatively small degrees.
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5 LILI-128 Design Choices

In this section we discuss the design choices behind some of the LILI-128 parameters,
and we review the resulting security properties.

Firstly, the feedback polynomial of LFSRd should not have low-weight polynomial mul-
tiples of relatively small degrees, in order to avoid the vulnerability to fast correlation
attacks on LFSRd when regularly clocked. This is not usually a significant factor, as it
is very rare for a primitive polynomial to have a low-weight multiple.

Secondly, the number and positions of taps for the filter function, fd, have been chosen
to ensure resistance to the attacks discussed in Section 4.2. This was the motivation for
our choice of 10 inputs from tap positions which form a full positive difference set.

Thirdly, the filter function, fd, should be balanced in order to achieve good statistical
properties and a large period (Theorem 1).

Fourthly, fd has been selected to reduce the effectiveness of attacks discussed in Section
4.2 (especially if k = 1). To this end, fd has high correlation-immunity order and high
nonlinearity. The proportion of balanced Boolean functions which offer any nonzero order
of correlation immunity is small, making it unlikely that a randomly generated function
will meet these criteria. Instead, a filter function was constructed to obtain the required
properties. Since there are tradeoffs between nonlinearity, correlation immunity, and
algebraic order, we sought functions that optimise these bounds.

In [15], it was proven that balanced, correlation immune order 3 Boolean functions exist
with 10 inputs, order 6 and nonlinearity 480. In the same paper a function with CI(1),
order 8 and nonlinearity 484 was constructed. Both of these Boolean functions maximise
the Siegenthaler tradeoff and they have the highest possible nonlinearity for their given
order of correlation immunity, so either would be a good choice for the output function
fd. For LILI-128, we chose a CI(3) function as we believe that gives a greater resistance
to conditional correlation attacks.

5.1 Standard Security Properties

As the feedback polynomial of LFSRd is primitive, fd is balanced and in addition 289−1
is a Mersenne prime, the conditions of Theorem 2 are satisfied. Thus the period of the
keystream is Pz = (239 − 1)(289 − 1). According to Section 3.2, the linear complexity of
the keystream sequence is conjectured to be at least

(Ld
r

)

· Pc =
(89

6

)

· (239 − 1) ≈ 268.
With regard to the security offered by this value, we note that this means that 269 known
plaintext bits must be intercepted in order to perform the Berlekamp-Massey [10] attack.
As the key will be changed well before even a fraction of this amount of data is generated,
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LILI-128 is considered to be secure from such an attack.

5.2 Security Against Possible Attacks

Both the period and the conjectured linear complexity of the keystream are too large to
be used in cryptanalytic attacks.

The choice of parameters for the data-generation subsystem, in particular the Boolean
function fd, make attacks targeting LFSRc, outlined in Section 4.2, infeasible. In [14],
fast correlation attacks on regularly clocked nonlinear filter generators with low-weight
feedback polynomials and a known keystream segment of 20,000 bits were not successful
when the probability of noise, p, exceeded 0.45. The computational complexity of these
attacks is proportional to the length of keystream used and the average number of parity
checks used per keystream bit. For the assumed function fd, the probability of noise is
given as p = 0.46875, so that the amount of keystream required would be much greater
than 20,000 bits. This is likely to make the complexity of an attack on a regularly clocked
nonlinear filter generator prohibitive, even if enough low-weight polynomial multiples of
the LFSRd feedback polynomial, used to form parity checks, could be obtained. Given
that the keystream segment is from a clock-controlled nonlinear filter generator and that
the LFSRd feedback polynomial does not have low-weight polynomial multiples, such an
attack appears infeasible.

The length of LFSRd makes attacks targeting LFSRd, outlined in Section 4.1, infeasible
as these attacks require exhaustive search of the initial states of LFSRd, performing
some calculation of the correlation for each state. The complexity of such attacks is
O((289 − 1)(3N2)), where the required length of the known keystream, N , is very likely
to be very large even for k = 2. In [17], successful probabilistic correlation attacks
were performed on the shrinking generator for given keystream lengths of twenty times
the length of the underlying LFSR. The deletion rate for this example is similar, so an
estimate of the complexity of these attacks is O(2112), requiring approximately 1700 bits
of known plaintext.

5.3 Summary of Security Claims

In this section we sumarize the claims we make for the security of LILI-128. Firstly, the
period at around 2128 is sufficiently large. Secondly the linear complexity is conjectured
to be at least 268, so that at least 269 consecutive bits of known plaintext are required for
the Berlekamp-Massey attack. This is an infeasible amount of text to collect. Thirdly,
we conjecture that the complexity of divide and conquer attacks on LILI-128 is at least
2112 operations, requiring knowledge of at least 1700 known keystream bits. This is a
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conservative estimate, and the true level of security may be much higher. Taken together,
these results indicate that LILI is a secure synchronous stream cipher.

6 Efficiency and Implementation

This submission includes an unoptimized reference implementation of LILI-128 that runs
at 4.8 Megabits per second (Mbps) (1200 cycles per byte) on a 650 MHz Pentium III
with 128MB of memory. An optimised implementation of LILI-128 is currently under
development.

LILI-128 can be made to run very quickly in hardware by exploiting the parallelism
between the two stages. Also, linear feedback shift registers are extremely efficient in
hardware implementations. To achieve the maximum throughput rate, instead of irreg-
ularly clocking the shift register a given number of steps, four copies of the feedback
function can be maintained. In this fashion, the irregular clocking can then be performed
in one step only in hardware. Thus there is a tradeoff between hardware space and timing
regularity. Note that the use of this parallel-feedback method would provide resistance
against timing attacks.

Although we have no hardware simulation results, we expect an optimised LILI-128 to
produce output at a rate close to that of the underlying clock.

7 Conclusion

In this paper, the LILI-128 keystream generator, intended for use in stream cipher ap-
plications, is proposed. The design is simple: the LILI-128 generator are based on two
binary LFSRs and use two combining functions. The security of this keystream gener-
ator has been investigated with respect to currently known styles of attack. With the
chosen parameters, LILI-128 provides the basic security requirements for cryptographic
sequences, such as a long period and high linear complexity. Also, LILI-128 is immune to
current known-plaintext attacks, conducted under the assumption that the cryptanalyst
knows the entire structure of the generator and the secret key is only the initial states of
the two LFSRs.

The use of both nonlinear combining functions and irregular clocking in LFSR based
stream ciphers is not a novel proposal, and has been employed in previous constructions.
However, in this proposal the two approaches are combined in a manner that produces
output sequences with provable properties with respect to basic cryptographic security
requirements and also provides security against currently known cryptanalytic attacks.
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The design is transparent, relying on basic known results in LFSR theory. In addition
LILI-128 is easy to implement in software or hardware and, as it employs only simple
components, LILI-128 can be implemented efficiently on any platform.

Finally, the designers would like to state that no weakness has been inserted into the
LILI-128 design.
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APPENDIX

Output Boolean Function for LILI-128 Stream Cipher

This is the truth table of the output function fd:

0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,
0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,
0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,
1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,
0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,
0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,
0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,
1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,
0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,
0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,
0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,
1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,
0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,
1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,
0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,
1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,
0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,
1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0,
0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,
1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,
0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,
1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,
0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,
1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,
0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,
1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,
0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,
1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,
0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0

The Boolean Function has 10 inputs and these properties:

Balanced, CI(3), Order=6, Nonlinearity=480, No Linear Structures.
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