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1 Introduction

The Advanced Cryptographic Engine (ACE ) is a library of software routines that im-
plement a public key encryption scheme as well as a digital signature scheme. Since
names are sometimes convenient, we call the encryption scheme “ACE Encrypt” and
the signature scheme “ACE Sign.” These schemes are almost as efficient as commer-
cially used schemes, yet unlike such schemes, can be proven secure under reasonable
and well-defined intractability assumptions. The schemes implemented are particular
variants of the Cramer-Shoup encryption scheme [CS98] and the Cramer-Shoup signa-
ture scheme [CS99]. These variants have been finely tuned to strike a good balance
between efficiency and security. The papers [CS98] and [CS99], as well as the related
background papers [Sho00a], [Sho00b], and also [Sho98] are available on line at the
following URL:

http://www.zurich.ibm.com/Technology/Security/extern/ace

In this document, we specify these schemes with enough detail to ensure interoperability
between different implementations. We also present a concrete security analysis of both
schemes.

Before doing this, however, we sketch the security goals that these schemes are meant
to achieve, and the assumptions under which these goals are actually achieved.

2 Security goals

2.1 Provable security

One of the goals of modern cryptography is to design cryptographic primitives, such as
signatures and encryption schemes, and to reason about their security. This task can
be divided into three sub-tasks:

• to define an appropriate notion of security, including a formal model that de-
scribes how an adversary interacts with the system, and what constitutes “break-
ing” the system;

• to design cryptographic schemes;

• to prove the security of cryptographic schemes.

The importance of the definitional aspect cannot be overemphasized. It has taken a
number of years for the “right” definitions for many cryptographic primitives to emerge,
and there is still work to be done in defining security for more complex systems. Many
cryptographic schemes have been “broken” only because the designers of the scheme
did not anticipate certain modes of attack.

In terms of proving security, the ultimate goal would be to prove that a scheme cannot
be broken—period. While this can be achieved for certain cryptographic problems,
the solutions are generally quite impractical, and require a very special set of physical
assumptions. We refer the reader to Maurer’s survey on this area of information-
theoretic cryptography [Mau99].
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The next most ambitious goal for proving security would be to prove that a scheme
can not be broken without the use of an inordinate amount of computing resources.
Unfortunately, given the current state of mathematical knowledge, we cannot hope
to prove the security of any scheme in this absolute sense. Rather, by a “provably
secure” scheme, cryptographers usually mean security in a conditional sense, based
upon “reasonable and natural” intractability assumptions, e.g., the assumption that
factoring large numbers is hard. This is the sense in which we shall use the term
“provably secure.”

Although provable security in this conditional sense may not be as strong a notion as
one would like, it is still a very powerful notion. It guarantees that there can be no
“shortcuts” in breaking a cryptographic system—an adversary attempting to break the
system must attack the underlying “hard” problems directly. There are several exam-
ples of cryptographic systems that have been proposed, and even deployed, only later
to be broken via a “shortcut”—that is, without solving the underlying “hard” prob-
lem. One of the more spectacular such examples is Bleichenbacher’s chosen ciphertext
attack on RSA’s encryption scheme, PKCS #1 [Ble98]. Even though the underlying
encryption scheme is based on the RSA problem (see §2.6), Bleichenbacher’s attack
cleverly breaks the scheme without solving this problem. This attack rendered inse-
cure the widely deployed SSL key agreement protocol, which is based on this encryption
scheme. Another recent example is an attack on the ISO 9761-1 standard for digital
signatures [CNS99, CHJ99]. Again, even though the scheme is based on the RSA
problem, the attack cleverly breaks the scheme without solving this problem.

Random oracle arguments

There are a number of examples in the literature of cryptographic schemes that are
either provably secure but hopelessly impractical, or practical but lacking a proof of
security (or even broken). Schemes that are both truly practical and provably secure
are hard to come by. Because of this, a new trend has emerged in the cryptographic
research community: proofs of security in an idealized model of computation wherein
a cryptographic hash function (like MD5 or SHA-1) is treated as if it were a random
oracle, i.e., a “black box” that contains a random function which can only be evaluated
by making an explicit query. This “random oracle” model for security analysis was
informally introduced by [FS87], and later formalized by [BR93]. It has been used to
analyze numerous cryptographic systems (see, e.g., [BR94] and [PS96]). However, we
must emphasize that making use of random oracles is not just another assumption—a
cryptographic hash function is not, and never can be, a random oracle. It is entirely
possible that a cryptographic scheme that is secure in the random oracle model can be
broken without either breaking the underlying hard problem, or finding any particular
weakness in the cryptographic hash function. Indeed, this is amply demonstrated in
[CGH98]. Our point of view is that a security analysis in the random oracle model
is best viewed as heuristic evidence for the security of a scheme. If the only practical
solutions to a problem rely on a random oracle argument for their proof of security,
fine—this is much better than no security analysis at all; but if a practical solution can
be obtained without relying on a random oracle argument, so much the better.

Shortly after RSA’s PKCS #1 was shown to be vulnerable to a chosen ciphertext
attack, it was modified so as to utilize Bellare and Rogaway’s OAEP encryption scheme
[BR94]. This scheme is provably secure in the random oracle model (assuming the
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RSA problem is hard). The encryption scheme described in this document is provably
secure—without making random oracle arguments—and is not too much less efficient
than OAEP. Although there may be scenarios where the engineering requirements are so
constraining that even this slight loss of efficiency cannot be tolerated, we believe that
there are other scenarios where this tradeoff between efficiency and provably security
is certainly worth making.

Choosing intractability assumptions

The notion of “provable security” is not entirely precise, since one has a certain flexi-
bility in choosing the “reasonable and natural” intracatbility assumptions on which a
proof of security can be based.

There are several characteristics that are desirable in an intractability assumption.
Ideally, the “hard” problem should be well studied. Failing that, the problem should
at least be fairly natural and easy to describe, so that it can be understood and studied
by a reasonable number of people. At the very least, we believe that the problem
should be non-interactive, that is, of the form: given an instance of a problem (e.g.,
the product of two large, random primes), it is hard to solve the problem (e.g., factor
the number). The reason for this is that cryptographic primitives and protocols can
be attacked in quite complicated and subtle ways by an adversary that interacts with
the system, and such interaction is quite subtle to analyze. Reducing the security of a
complex, interactive system to the hardness of a non-interactive problem can be seen
as one of the main activities of modern theoretical cryptography. Another nice feature
of requiring non-interactive assumptions is that it rules out the “proof technique” of
proving a cryptosystem is secure by assuming a priori that it is secure.

The reason we spend some time discussing what we believe constitutes a “reasonable
and natural” intractability assumption is that some researchers apparently have a much
more liberal interpretation of the term. For example, in [ZS92], the authors prove the
security of an encryption scheme based on an assumption of the form: an arbitrary
adversary can be replaced by an essentially equivalent adversary that behaves in a
certain nice way. As one can see, by our standards, this is not a reasonable intractability
assumption—it is really just a proof of security against a restricted class of adversaries.
As another example, in [ABR98], the authors make intractability assumptions that
are interactive; indeed, these intractability assumptions amount to little more than a
restatement of the definition of security in terms of the particular implementation that
they propose. We believe this misses the whole point of “provable security,” and it
certainly does not meet our standard of a reasonable intractability assumption.

2.2 Secure public key encryption

The development of a practically useful and mathematically meaningful definition of
secure public key encryption took the cryptographic research community a number of
years. There are a number of weak, ad hoc, notions of security which are not very useful.
These include (1) the requirement that the private key should be hard to recover, and
(2) the requirement that individual ciphertexts should be hard to decrypt.

The first step towards a workable definition was the formulation of the notion of seman-
tic security by [GM84]. This definition of security captures the notion that a ciphertext
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leaks no information about the corresponding cleartext to a (computationally bounded)
eavesdropper.

We sketch this definition in more detail. Briefly, security in this sense means that it is
infeasible for an adversary to gain a non-negligible advantage in the following game. A
public key/private key pair for the scheme is generated, and the adversary is given the
public key. Then the adversary generates two equal length messages m0,m1, and gives
these to an encryption oracle. We assume these two messages have non-zero length.1

The encryption oracle chooses a bit b ∈ {0, 1} at random, encrypts mb, and gives the
adversary the corresponding target ciphertext ψ′. Finally, the adversary outputs his
guess at b. The adversary’s advantage is defined to be the distance from 1/2 of the
probability that his guess is correct.

As mentioned above, the formal definition of semantic security captures the intuitive
notion that no information about an encrypted message is leaked to a passive adversary
that only eavesdrops. In protocol design and analysis, a much more robust definition is
often required that captures the intuitive notion of security against an active attack, in
which the adversary not only can eavesdrop, but can inject his own messages into the
network. The type of security one needs in this setting is non-malleability, also called
security against chosen ciphertext attack, a notion that was formalized in the sequence
of papers [NY90, RS91, DDN91].

The definition of non-malleability is the same as for semantic security, but with the
following essential difference. The adversary is given access to a decryption oracle
throughout the entire game; the adversary may request the decryption of ciphertexts
ψ of his choosing, subject only to the (obviously necessary) restriction that after the
target ciphertext ψ′ has been generated, the adversary may not request the decryption
of ψ′ itself.

Another intuitive way to understand non-malleability (and the motivation for its name)
is that a non-malleable encryption scheme essentially provides a secure envelope, that
is, an envelope whose contents can neither be seen nor modified by an adversary.

Non-malleability is a fundamental notion that is necessary to ensure the security of
numerous protocols that use public-key encryption. Sometimes, security engineers
appear to implicitly assume that a given encryption scheme is non-malleable, even if
there is no justification for this. A case in point is Bleichenbacher’s attack on SSL (see
§2.1).

For further discussion on the importance of non-malleability, see [Sho98].

The above definitions for semantic security and non-malleability may seem somewhat
limited at first sight—in particular, one might ask what security properties are guar-
anteed in a richer attack scenario where there are many users with public keys and
many messages are encrypted under these public keys. However, the above defini-
tions are quite robust, and it is well known that they are essentially equivalent to just
about any reasonable generalization one might consider in a multi-user/multi-message
environment. For a detailed account of this issue, see [BBM00].

1A user might encrypt a zero length message, but this is not interesting from a security point of
view.
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Concrete security analysis

In this document, we want to carry out a concrete (or exact) exact security analysis.
That is, we want to develop an explicit, quantitative relationship between the hardness
of breaking a cryptosystem and the hardness of the underlying problems on which it is
based. In order to facilitate this, we define

AdvEnc(t, κ, l)

to be the advantage in the above game defining non-malleability, where we consider an
adversary that runs in time at most t, makes at most κ decryption requests, and l is
an upper bound on the length (in bytes, say) of the test messages m0,m1.

This function implicitly depends on the security parameters chosen to define the sig-
nature scheme.

Also note that this function depends on the model of computation, since the notion
of “time” depends on the details of this model. We do not want to get mired in the
details of this. A perfectly acceptable model is to fix a simple stored-program machine
model with a fixed word size (32 or 64 bits) and a convenient and realistic instruction
set, and then to measure time by counting the number of instructions executed. We
also count in the running time the size of the program, as well as any pre-initialized
data tables.

Note that for simplicity, in the adversary’s time we count the time spent by the key
generation algorithm, encryption algorithm, and decryption algorithm—that is, the
entire running time of the attack game is “charged” to the adversary. Also, we shall
view t as a strict bound on the running time, and not, say, an expected value.

2.3 Secure digital signatures

The notion of security we want is that of security against existential forgery against
adaptive chosen message attack, as defined in [GMR88]. This is the strongest, and
most useful notion of security, allowing a signature scheme to be used in an arbitrary
application without restrictions.

Briefly, security in this sense means that it is infeasible for an adversary to win the
following game. A public key/private key for the scheme is generated, and the adversary
is given the public key. The adversary then makes a sequence of signing requests. The
messages for which the adversary requests signatures can be adaptively chosen, i.e.,
they may depend on previous signatures. The adversary wins the game if he can
forge a signature, i.e., can output a message other than one for which he requested a
signature, along with a valid signature on that message.

Concrete security analysis

In order to facilitate concrete security analysis, we define

AdvSig(t, κ, l)

to be the probability that an adversary wins the above game, where we consider adver-
saries that run in time at most t, make at most κ signing requests, and l is an upper
bound on the total length (in bytes, say) of all the signed messages.
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All of the technical caveats on the definition of AdvEnc apply to the definition of AdvSig
as well.

2.4 Intractability assumptions

The signature scheme and encryption scheme in ACE can be proven secure under
reasonable and natural intractability assumptions, without resorting to random oracle
arguments. However, we do make use of cryptographic hash functions as a “hedge”: in
the random oracle model, the schemes in ACE can be proven secure under even weaker
intractability assumptions.

The four basic assumptions we need are as follows:

(1) The Decisional Diffie-Hellman (DDH) assumption.

(2) The Strong RSA assumption.

(3) SHA-1 second preimage collision resistance.

(4) MARS sum/counter mode pseudo-randomness.

We need assumptions (1), (3), and (4) to prove the security of the encryption scheme,
and we need assumptions (2), (3), and (4) to prove the security of the signature scheme.
In the random oracle model, assumptions (1) and (2) can be replaced by

(1′) The Computational Diffie-Hellman (CDH) assumption.

(2′) The RSA assumption.

Thus, although we need to make somewhat strong intractability assumptions to get
a true proof of security, our schemes are in a sense no less secure than more tradi-
tional schemes that are based on assumptions (1′) and (2′), but which (at best) can be
analyzed only in the random oracle model.

We now describe these assumptions in some detail.

2.5 The Computational and Decisional Diffie-Hellman assumption

Let G be a group of large prime order q and let g ∈ G be a generator. The Compu-
tational Diffie-Hellman (CDH) assumption, introduced by [DH76], is the assumption
that computing gxy from gx and gy is hard. It is a widely held belief that the security
of certain key exchange protocols (such as STS [DvOW92]) is implied by the CDH
assumption. This is simply false—under any reasonable definition of security—except
in the random oracle model of security analysis. What is almost always needed, but
often not explicitly stated, is the Decisional Diffie-Hellman (DDH) assumption.

For g1, g2, u1, u2 ∈ G, define DHP(g1, g2, u1, u2) to be 1 if there exists x ∈ Zq such that
u1 = gx1 and u2 = gx2 , and 0 otherwise. A “good” algorithm for DHP is an efficient,
probabilistic algorithm that computes DHP correctly with negligible error probability
on all inputs. The DDH assumption is the assumption that there is no good algorithm
for DHP .
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This formulation is equivalent to the more usual one where

g1 = g, g2 = gx, u1 = gy, u2 = gxy.

The DDH assumption is a potentially stronger assumption than the CDH assumption,
but at the present time, the only known method for breaking either assumption is to
solve the Discrete Logarithm problem.

The DDH assumption appears to have first surfaced in the cryptographic literature in
a paper by S. Brands [Bra93]. See [Bon98, CS98, NR97, Sta96] for further applications
of and discussions about the DDH assumption.

The groups G that are used in ACE are prime-order subgroups of the multiplicative
group of units modulo a large prime. These subgroups have order roughly 2256.

Random self reduction and an equivalent formulation of the DDH

There are a few useful random self-reductions that allow us to transform arbitrary
inputs to DHP into random inputs on which DHP evaluates to the same value.

Let g1, g2, u1, u2 be given such that g1 6= 1 and g2 6= 1. We can randomize u1 and u2

as follows:
ũ1 = ua1g

b
1, ũ2 = ua2g

b
2,

where a, b ∈ Zq are chosen at random. Suppose that u1 = gx1 and u2 = gy2 . If x = y,
then (ũ1, ũ2) is a random pair of group elements, subject to logg1

(ũ1) = logg2
(ũ2). If

x 6= y, then (ũ1, ũ2) is a pair of random, independent group elements.

Next, we can randomize g2 as follows:

g̃2 = gc2, ũ1 = ua1g
b
1, ũ2 = uac2 g

bc
2 ,

where c ∈ Zq is chosen at random.

Additionally, we can randomize g1 as follows:

g̃1 = gd1 , g̃2 = gc2, ũ1 = uad1 g
bd
1 , ũ2 = uac2 g

bc
2 ,

where d ∈ Zq is chosen at random.

With this transformation, we see that we can transform an arbitrary input to DHP to
an equivalent, random input. From this, it follows that the two distributions

R : (g1, g2, g
x
1 , g

y
2), random g1, g2 ∈ G\{1}; x, y ∈ Zq,

and
D : (g1, g2, g

x
1 , g

x
2 ), random g1, g2 ∈ G\{1}; x ∈ Zq

are computationally indistinguishable under the DDH assumption. This random self-
reducibility property was first observed by Stadler [Sta96] (and also independently in
[NR97]).
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Concrete security analysis

In order to facilitate concrete security analysis, we define

AdvDDH(t)

to be the maximum over all statistical tests T that run in time at most t and output
0, 1 of ∣∣∣Pr[T (R) = 1]− Pr[T (D) = 1]

∣∣∣ .
2.6 The RSA and strong RSA assumptions

The RSA problem is the following. Given a randomly generated RSA modulus n, an
exponent r, and a random z ∈ Z∗n, find y ∈ Z∗n such that yr = z. The exponent r
is drawn from a particular distribution—particular distributions give rise to particular
versions of the RSA problem. The RSA assumption is the assumption that this problem
is hard to solve.

The flexible RSA problem is the following. Given an RSA modulus n and a random
z ∈ Z∗n, find r > 1 and y ∈ Z∗n such that yr = z. The choice of r may be restricted
in some fashion—particular restrictions give rise to particular versions of the flexible
RSA problem. The strong RSA assumption is the assumption that this problem is
hard to solve. Note that this differs from the ordinary RSA assumption, in that for
the RSA assumption, the exponent r is chosen independently of z, whereas for the
strong RSA assumption, r may be chosen in a way that depends on z. The strong RSA
assumption is a potentially stronger assumption than the RSA assumption, but at the
present time, the only known method for breaking either assumption is to solve the
integer factorization problem.

The strong RSA assumption was introduced in [BP97], and has subsequently been used
in the analysis of several cryptographic schemes (see, e.g., [FO99, GHR99]).

Concrete security analysis

We define
AdvRSA(t)

to be the maximum over all algorithms that run in time at most t of the probability of
solving the RSA problem. We also define

AdvFlexRSA(t)

to be the corresponding probability for solving the flexible RSA problem.

Random Self Reduction

One of the nice features about the RSA problem is that it is random self-reducible.
That is, having fixed n and r, then the problem of computing y = z1/r for an arbitrary
z ∈ Z∗n can be reduced to the problem of computing ỹ = z̃1/r for random z̃ ∈ Z∗n. This
means that given an efficient algorithm to solve the latter problem, one can efficiently
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solve the former problem. This is a well-known and quite trivial reduction: given z,
choose s ∈ Z∗n at random, and set z̃ = srz. Then we have y = ỹ/s.

The existence of such a random self reduction adds credibility to the RSA assumption,
since if there is an algorithm that solves the RSA problem for a given n and for a
non-negligible fraction of choices of z, then there is another algorithm that solves the
RSA problem for the same n for all choices of z.

There is also a random self reduction for the flexible RSA problem, at least in the
particular version that we need to prove the security of the signature scheme. Just as
for the RSA problem, this random self reduction adds credibility to the strong RSA
assumption. This reduction appears not to be so well known, and is described in detail
in the full-length version of [CS99].

2.7 SHA-1 second preimage collision resistance

The notion of a UOWHF was introduced by Naor and Yung [NY89]. A UOWHF is
a keyed hash function with the following property: if an adversary chooses a message
x, and then a key K is chosen at random and given to the adversary, it is hard for he
adversary to find a different message x′ 6= x such that HK(x) = HK(x′).

As a cryptographic primitive, a UOWHF is an attractive alternative to the more tradi-
tional notion of a collision-resistant hash function (CRHF), which is characterized by
the following property: given a random key K, it is hard to find two different messages
x, x′ such that HK(x) = HK(x′).

A UOWHF is an attractive alternative to a CRHF because

(1) it seems easier to build an efficient and secure UOWHF than to build an efficient
and secure CRHF, and

(2) in many applications, most importantly for building digital signature schemes, a
UOWHF is sufficient.

As evidence for claim (1), we point out the recent attacks on MD5 [dBB93, Dob96].
We also point out the complexity-theoretic result of Simon [Sim98] that shows that
there exists an oracle relative to which UOWHFs exist but CRHFs do not. CRHFs
can be constructed based on the hardness of specific number-theoretic problems, like
the discrete logarithm problem [Dam87]. Simon’s result is strong evidence that CRHFs
cannot be constructed based on an arbitrary one-way permutation, whereas Naor and
Yung [NY89] show that a UOWHF can be so constructed.

As we shall see, ACE needs only a UOWHF. We construct such a UOWHF by using
the composition theorem in [Sho00a], together with the SHA-1 low-level compression
function

C : {0, 1}672 → {0, 1}160

as the basic primitive. The assumption we make about C is that it is second preimage
collision resistant, i.e., if a random input x ∈ {0, 1}672 is chosen, then it is hard to
find different input x′ 6= x such that C(x) = C(x′). This assumption seems to be
much weaker than assumption that no collisions in C can be found at all (which as
an intractability assumption does not even make sense). Indeed, the techniques used
to find collisions in MD5 [dBB93, Dob96] do not appear to help in finding second
preimages.
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Note that from a complexity theoretic point of view, second preimage collision resis-
tance is no stronger than the UOW property. Indeed, if HK(x) is a UOWHF, then the
function sending (K,x) to (K,HK(x)) is second preimage collision resistant.

All of the above tends to indicate that the assumption that C is second preimage
collision resistant is much more reasonable than the assumption that C is collision
resistant. Also note that from a concrete, quantitative security point of view, second
preimage collision resistance is also quite attractive. The SHA-1 compression function
C has a 160-bit output. Because of the birthday paradox, collisions can be found by
brute-force search in 280 steps, but a brute-force search for a second preimage would
require 2160 steps. In not too many years, an attack that takes 280 steps may be
near the threshold of feasibility; in this situation, a scheme that relies on the collision
resistance for C can no longer be considered secure, whereas a scheme that relies only
on second preimage collision resistance may still be considered secure, provided no
attack substantially better than a brute-force attack is discovered.

Concrete security analysis

We define
AdvSHA(t)

to be the maximum over all algorithms that run in time at most t of the probability of
finding second preimages for SHA-1, as defined above.

2.8 MARS sum/counter mode pseudo-randomness

We will make use of the MARS block cipher [BCD+98] in sum/counter mode to generate
sequences of pseudo-random bits.

Let f(k, x) denote the evaluation of the block cipher MARS using a 256-bit key k and
a 128-bit input block x, yielding a 128-bit output block. The assumption we make
about MARS is that when used in sum/counter mode, the resulting sequence of bits is
pseudo-random.

More precisely, consider the following two distributions, for a given length parameter
l > 0:

Pl : (x, f(k, x)⊕ f(k, x+ 1), . . . , f(k, x+ 2l − 2)⊕ f(k, x+ 2l − 1)),

where k is a random 256-bit string and x is a random 128-bit string, and

Rl : (x, r0, . . . , rl−1),

where x, r0, . . . , rl−1 are random 128-bit strings. Here, we interpret “x + j,” for 0 ≤
j < 2l in the natural way as the 128-bit block representing x+ j reduced modulo 2128.

The pseudo-randomness assumption we make is that the two distributions Pl and Rl

are computationally indistinguishable.

Concrete security analysis

In order to facilitate concrete security analysis, we define

AdvMARS(t, l)
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to be the maximum over all statistical tests T that run in time at most t and output
0, 1 of ∣∣∣Pr[T (Rl) = 1]− Pr[T (Pl) = 1]

∣∣∣ .
Summed MARS

Note that in this construction, instead of using the output of MARS in counter mode
directly, we take the exclusive or of consecutive pairs of MARS outputs. This of course
degrades the speed by a factor of two, but there are some advantages from a security
pont of view.

First, since the adversary does not see any MARS input/output pairs, but only the
exclusive ors of outputs, certain types of cryptanalysis should be less feasible.

Second, and more important, this construction goes a long way to hiding the fact that
MARS actually behaves like a random permutation, and not a random function. In-
deed, if we just use MARS directly in counter mode, then we can distinguish its output
from random with an advantage close to l2/2128, simply because in a sequence of ran-
dom blocks, we would expect a collision, but none is forthcoming from MARS. Recent
results of [BI99] imply that the sum/counter mode construction reduces the advantage
to something much closer to l/2128. A similar result has also been independently ob-
tained by [Luc00]. The latter result is based on a much more elementary proof, and is
somewhat weaker; however, for l < 264, the result in [Luc00] is nearly as good as that
in [BI99].

3 Terminology and Notation

In order to describe the encryption and signature schemes precisely, we need to establish
some notational conventions.

3.1 Basic mathematical notation

- Z
The set Z of integers.

- F2[T ]
The set F2[T ] of univariate polynomials with coefficients in the finite field F2 of
cardinality 2.

- A rem n
For A ∈ Z and integer n > 0, then A rem n is defined to be the integer r ∈
{0, . . . , n− 1} such that A ≡ r (mod n).

- A rem f
For A, f ∈ F2[T ] with f 6= 0, A rem f is defined to be the polynomial r ∈ F2[T ]
with deg(r) < deg(f) such that A ≡ r (mod f).

11



3.2 Basic string notation

Fix a set A. A∗ denotes the set of all strings, i.e., finite sequences, over the set A. For
n ≥ 0, An denotes the set of all sequences of length n over A.

For a string x ∈ A∗, L(x) denotes its length. The string of length zero is denoted λA.

Let x = (a0, . . . , am−1) ∈ Am be a string of length m, where ai ∈ A for 0 ≤ i < m. For
0 ≤ i ≤ j ≤ m, we define the substring operation

[x]ji
def= (ai, . . . , aj−1) ∈ Aj−i.

For 0 ≤ i ≤ m− 1, we define the selection operation

x[i] def= ai ∈ A.

For x, y ∈ A∗, we define z = x ‖ y to be the concatenation of x and y. That is, z ∈ A∗

is the unique string such that L(z) = L(x) + L(y), [z]L(x)
0 = x, and [z]L(z)

L(x) = y.

3.3 Bits, bytes, and words

Define b def= {0, 1}, the set of bits. We will work with sets of the form

b, bn1 , (bn1)n2 , . . . .

For such a set A, we define the “zero element” 0A ∈ A recursively, as follows:

0b
def= 0 ∈ b;

0An
def= (0A, . . . , 0A) ∈ An for n ≥ 0.

We define B def= b8, the set of bytes.

We define W def= b32, the set of words.

For x ∈ A∗ with A ∈ {b,B,W}, and for l ≥ 0, we define a padding operator

pad l(x) def=

{
x if L(x) ≥ l;
x ‖ 0Al−L(x) otherwise.

For x ∈ A∗ with A ∈ {b,B,W}, we say that x is normalized if x is not of the form
y ‖ 0An for some y ∈ A∗ and some n > 0.

3.4 Conversion operators

We define a number of conversions among Z,F2[T ],b∗,B∗,W∗. The general notation
for a conversion operator is

Idst
src : src → dst ,

which is a function that converts an element of the set src to an element of the set dst .

All of these conversion operators are quite simple and natural, even though their formal
specification is a little tedious. The only thing to really notice is that the conversion
between byte strings and word strings follows what is sometimes called the “little
endian” ordering convention.
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- IZ
b∗(x) def=

∑L(x)−1
i=0 x[i]2i.

- Ib∗

Z (n) def= x, where x ∈ b∗ is the unique, normalized bit string such that IZ
b∗(x) = |n|.

- IF2[T ]
b∗ (x) def=

∑L(x)−1
i=0 x[i]T i.

- Ib∗

F2[T ](f) def= x, where x ∈ b∗ is the unique, normalized bit string such that IF2[T ]
b∗ (x) =

f .

- Ib∗

B∗(x) def= x[0] ‖x[1] ‖ · · · ‖x[L(x)− 1].

- IB∗

b∗ (x) def= y, where y ∈ B∗ is the unique byte string with L(y) = dL(x)/8e and
Ib∗

B∗(y) = pad8L(y)(x).

- Ib∗

W∗(x) def= x[0] ‖x[1] ‖ · · · ‖x[L(x)− 1].

- IW∗

b∗ (x) def= y, where y ∈ W∗ is the unique word string with L(y) = dL(x)/32e and
Ib∗

W∗(y) = pad32L(y)(x).

- IB∗

W∗(x) def= y, where y ∈ B∗ is the unique byte string such that Ib∗

B∗(y) = Ib∗

W∗(x).

- IW∗

B∗ (x) def= y, where y ∈ W∗ is the unique word string with L(y) = dL(x)/4e and
IB∗

W∗(y) = pad4L(y)(x).

- IZ
B∗(x) def= IZ

b∗(I
b∗

B∗(x))

- IB∗

Z (n) def= IB∗

b∗ (Ib∗

Z (n))

- IF2[T ]
B∗ (x) def= IF2[T ]

b∗ (Ib∗

B∗(x))

- IB∗

F2[T ](f) def= IB∗

b∗ (Ib∗

F2[T ](f))

- IZ
W∗(x) def= IZ

b∗(I
b∗

W∗(x))

- IW∗

Z (n) def= IW∗

b∗ (Ib∗

Z (n))

- IF2[T ]
W∗ (x) def= IF2[T ]

b∗ (Ib∗

W∗(x))

3.5 Other operators

For x, y ∈ b, we define z = x ⊕ y ∈ b to be the exclusive-or of x and y, i.e., z =
(x+ y) rem 2. We can extend the ⊕ operator element-wise to equal-length bit strings.
This defines an ⊕ operator on B and W, which we can then extend to equal-length
byte and word strings.

For convenience, for n ∈ Z, we define

Lb(n) def= L(Ib∗

Z (n)),

LB(n) def= L(IB∗

Z (n)),

LW(n) def= L(IW∗

Z (n)).
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It will also be convenient to define a simple “increment” operator on word strings. Let
x ∈Wn for some n > 0. Then

x+ 1 def= padn(IW∗

Z ((IZ
W∗(x) + 1) rem 232n)) ∈Wn.

We will make use of the following low-level cryptographic transformations:

- MARS
MARS encryption function as specified in [BCD+98], used with 256-bit keys; that
is

MARS : W8 ×W4 →W4,

where an input (k,m) consists of the key k and the input block m to be encrypted,
and the output is the resulting encrypted block; we do not make use of the
corresponding decryption function.

- CSHA1
SHA-1 core compression function as described in [SHA95]; that is

CSHA1 : W5 ×W16 →W5,

where an input (h,m) consists of the initial hash state h and a text input m, and
the output is the resulting final hash state.

3.6 Algorithmic notation

We use a fairly standard notation for describing algorithms. We use the notation
A ← B to denote the action of assigning the value of B to the variable A. All of our
algorithms are written as “pure” functions that take an input and return an output
using a “return” statement, and do not have any “side effects.” Some functions may
return one of several symbolic values (Accept,Reject,Prime,Composite).

Random numbers

At some points in the description of algorithms, we say something like “generate a
random such and such.” To implement this, one would need access to a source of
true random bits. However, most implementations will not have access to such a
source. Instead, it is presumed that a pseudo-random source is used. In all cases,
the implementor should use a cryptographically strong source of pseudo-random bits or
numbers, and ensure that the constructed objects have distributions as close as possible
to truly random objects.

An implementation tip

When we describe algorithms, there are several places where conversions are performed
between byte and word strings. In a careful implementation, one should convert all
byte strings to word strings as early as possible, and thereafter work exclusively with
word strings, since all the low-level operations work directly on words, not bytes.
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4 Encryption Scheme

This section defines the public key encryption scheme. It is a variant of the hybrid
version of [CS98] described in [Sho00b].

4.1 Encryption Key Pair

The encryption scheme defined in this document employs two key types, whose repre-
sentation consists of the following tuples:

ACE Encryption public key: (P, q, g1, g2, c, d, h1, h2, k1, k2).
ACE Encryption private key: (w, x, y, z1, z2).

For a given size parameter m, with 1024 ≤ m ≤ 16, 384, the components are as follows:

q – a 256-bit prime number.

P – an m-bit prime number with P ≡ 1 (mod q).

g1, g2, c, d, h1, h2 – elements of {1, . . . , P − 1} (whose multiplicative order modulo P
divides q).

w, x, y, z1, z2 – elements of {0, . . . , q − 1}.

k1, k2 – elements of B∗, with L(k1) = 20l′ + 64 and L(k2) = 32dl/16e + 40, where
l = dm/8e and l′ = Lb(d(2dl/4e+ 4)/16e).

4.2 Key Generation

Algorithm 4.2.1 generates an ACE encryption key pair.

Algorithm 4.2.1 Key generation for the ACE public-key encryption scheme.

Input: A size parameter 1024 ≤ m ≤ 16, 384.

Output: A public key/private key pair, as described in §4.1.

1. Generate a random prime q, where 2255 < q < 2256.

2. Generate a random prime P , 2m−1 < P < 2m, such that P ≡ 1 (mod q).

3. Generate a random integer g1 ∈ {2, . . . , P − 1} such that g1
q ≡ 1 (mod P ).

4. Generate random integers w ∈ {1, . . . , q − 1} and x, y, z1, z2 ∈ {0, . . . , q − 1}.

5. Compute the following integers in {1, . . . , P − 1}:

g2 ← g1
w rem P,

c ← g1
x rem P,

d ← g1
y rem P,

h1 ← g1
z1 rem P,

h2 ← g1
z2 rem P.
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6. Generate random byte strings k1 ∈ B20l′+64, and k2 ∈ B32dl/16e+40, where
l = LB(P ) and l′ = Lb(d(2dl/4e+ 4)/16e).

7. Return the public key/private key pair

((P, q, g1, g2, c, d, h1, h2, k1, k2), (w, x, y, z1, z2)).

4.3 Ciphertext Representation

Consider a public key (P, q, g1, g2, c, d, h1, h2, k1, k2) for the ACE encryption scheme,
as described in §4.1. A ciphertext of the ACE encryption scheme has the form

(s, u1, u2, v, e),

where the components are as follows:

u1, u2, v – integers in {1, . . . , P − 1} (whose multiplicative order modulo P divides q).

s – an element of W4.

e – an element of B∗.

We call the s, u1, u2, v the preamble, and e the cryptogram. If a cleartext is an l-byte
string, then the length of e is l + 16dl/1024e.
We introduce the function CEncode that is used to map a ciphertext to its byte-string
representation, and the inverse function CDecode. For integer l > 0, word string
s ∈W4, integers 0 ≤ u1, u2, v < 256l, and byte string e ∈ B∗,

CEncode(l, s, u1, u2, v, e)
def= IB∗

W∗(s) ‖ pad l(I
B∗

Z (u1)) ‖ pad l(I
B∗

Z (u2)) ‖ pad l(I
B∗

Z (v)) ‖ e
∈ B∗.

For integer l > 0 and byte string ψ ∈ B∗ with L(ψ) ≥ 3l + 16,

CDecode(l, ψ) def= (IW∗

B∗ ([ψ]16
0 ), IZ

B∗([ψ]16+l
16 ), IZ

B∗([ψ]16+2l
16+l ), IZ

B∗([ψ]16+3l
16+2l), [ψ]L(ψ)

16+3l)

∈ W4 × Z× Z× Z×B∗.

4.4 Encryption Operation

Algorithm 4.4.1 uses an ACE encryption public key to encrypt a message, and outputs
the resulting ciphertext.

Algorithm 4.4.1 ACE asymmetric encryption operation.

Input: A public key (P, q, g1, g2, c, d, h1, h2, k1, k2) as described in §4.1, and a byte
string M ∈ B∗.

Output: The byte-string encoded ciphertext ψ of M as described in §4.3.

1. Generate r ∈ {0, . . . , q − 1} at random.

2. Generate the ciphertext preamble:
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2.1 Generate s ∈W4 at random.

2.2 Compute u1 ← g1
r rem P , u2 ← g2

r rem P .

2.3 Compute α← UOWHash ′(k1, LB(P ), s, u1, u2) ∈ Z (using
Algorithm 4.9.2); note that 0 ≤ α < 2160.

2.4 Compute v ← crdαr rem P .

3. Compute the key for the symmetric encryption operation:

3.1 h̃1 ← h1
r rem P, h̃2 ← h2

r rem P .

3.2 Compute k ← ESHash(k2, LB(P ), s, u1, h̃1, h̃2) ∈W8 (using
Algorithm 4.7.1).

4. Compute the cryptogram e← SEnc(k, s, 1024,M) as described in
Algorithm 4.4.2.

5. Encode the ciphertext as specified in §4.3:

ψ ← CEncode(LB(P ), s, u1, u2, v, e).

6. Return ψ.

Before presenting the details of the symmetric key encryption algorithm, we give a
high-level description. An input message M ∈ B∗ is broken up into blocks M1, . . . ,Mt,
where each block except possibly the last has m = 1024 bytes. Each block is encrypted
using a stream cipher, yielding encrypted blocks E1, . . . , Et, where L(Ei) = L(Mi) for
1 ≤ i ≤ t. Also, for each encrypted block Ei, a 16-byte message authentication code
Ci is computed. The resulting cryptogram is then

e = E1 ‖C1 ‖ · · · ‖Et ‖Ct.

Thus, L(e) = L(M) + 16dL(M)/me. Note that if L(M) = 0, then L(e) = 0.

Algorithm 4.4.2 Symmetric encryption operation SEnc.

Input: A tuple (k, s,m,M) ∈W8 ×W4 × Z×B∗, with m > 0.

Output: e ∈ Bl, l = L(M) + 16dL(M)/me.

1. If M = λB, then return λB.

2. Initialize a pseudo-random generator state, using Algorithm 4.6.1:

genState ← InitGen(k, s) ∈ GenState.

3. Generate the AXUHash key kAXU (using Algorithm 4.6.3):

(kAXU , genState)← GenWords((5Lb(dm/64e) + 24), genState).

4. e← λB, i← 0.

5. While i < L(M) perform the following:
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5.1 r ← min(L(M)− i,m).

5.2 Generate mask values for the encryption and MAC:

5.2.1 (maskm, genState)← GenWords(4, genState).

5.2.2 (maske, genState)← GenBytes(r, genState) (using Algorithm 4.6.2).

5.3 Encrypt the plaintext: enc ← [M ]i+ri ⊕maske.

5.4 Generate the message authentication code:

5.4.1 If i+ r = L(M), then lastBlock ← 1; otherwise lastBlock ← 0.

5.4.2 mac ← AXUHash(kAXU , lastBlock , enc) ∈W4 (using
Algorithm 4.8.1).

5.5 Update the ciphertext: e ← e ‖ enc ‖ IB∗

W∗(mac ⊕maskm).

5.6 i← i+ r.

6. Return e.

4.5 Decryption Operation

Algorithm 4.5.1 uses an ACE encryption key pair to decrypt messages that have been
encrypted with the corresponding public key according to Algorithm 4.4.1.

Algorithm 4.5.1 ACE decryption operation.

Input: A public key (P, q, g1, g2, c, d, h1, h2, k1, k2) and corresponding private key
(w, x, y, z1, z2) as described in §4.1, as well as a byte string ψ ∈ B∗.

Output: The decryption M ∈ B∗ ∪ {Reject} of ψ.

1. Decode the ciphertext as specified in §4.3:

1.1 If L(ψ) < 3 · LB(P ) + 16, then return Reject.

1.2 Compute

(s, u1, u2, v, e)← CDecode(LB(P ), ψ) ∈W4 × Z× Z× Z×B∗;

note that 0 ≤ u1, u2, v < 256l, where l = LB(P ).

2. Verify the ciphertext preamble:

2.1 If u1 ≥ P or u2 ≥ P or v ≥ P then return Reject.

2.2 If u1
q 6= 1 rem P , then return Reject.

2.3 reject ← 0.

2.4 If u2 6= u1
w rem P , then reject ← 1.

2.5 Compute α← UOWHash ′(k1, LB(P ), s, u1, u2) ∈ Z (using
Algorithm 4.9.2); note that 0 ≤ α < 2160.

2.6 If v 6= u1
x+αy rem P , then reject ← 1.

2.7 If reject = 1, then return Reject.
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3. Compute the key for the symmetric decryption operation:

3.1 h̃1 ← u1
z1 rem P, h̃2 ← u1

z2 rem P .

3.2 Compute k ← ESHash(k2, LB(P ), s, u1, h̃1, h̃2) ∈W8 (using
Algorithm 4.7.1).

4. Compute M ← SDec(k, s, 1024, e) as described in Algorithm 4.5.2; note that
SDec may return Reject.

5. Return M .

Algorithm 4.5.2 Decryption operation SDec.

Input: A tuple (k, s,m, e) ∈W8 ×W4 × Z×B∗, with m > 0.

Output: The decryption M ∈ B∗ ∪ {Reject} of e.

1. If e = λB, then return λB.

2. Initialize a pseudo-random generator state, using Algorithm 4.6.1:

genState ← InitGen(k, s) ∈ GenState.

3. Generate the AXUHash key kAXU (using Algorithm 4.6.3):

(kAXU , genState ′)← GenWords((5Lb(dm/64e) + 24), genState).

4. M ← λB, i← 0.

5. While i < L(e) perform the following:

5.1 r ← min(L(e)− i,m+ 16)− 16.

5.2 If r ≤ 0, then return Reject.

5.3 Generate mask values for the encryption and MAC:

5.3.1 (maskm, genState)← GenWords(4, genState).

5.3.2 (maske, genState)← GenBytes(r, genState) (using Algorithm 4.6.2).

5.4 Verify the message authentication code:

5.4.1 If i+ r + 16 = L(M), then lastBlock ← 1; otherwise lastBlock ← 0.

5.4.2 mac ← AXUHash(kAXU , lastBlock , [e]i+ri ) ∈W4 (using
Algorithm 4.8.1).

5.4.3 If [e]i+r+16
i+r 6= IB∗

W∗(mac ⊕maskm), then return Reject.

5.5 Update the plaintext: M ←M ‖ ([e]i+ri ⊕maske).

5.6 i← i+ r + 16.

6. Return M .
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4.6 Pseudo-Random Bit Generator

This section defines a pseudo-random bit generator, based on the block cipher MARS .
The state of the generator is an element of the set

GenState = W8 ×W4 ×B16 × {0, . . . , 16}.

It produces an unlimited sequence of bytes. The generator works by using MARS in
“sum/counter mode,” but with a randomized starting value.

First comes the initialization routine. The first input parameter k should be random
and secret—it is used as a MARS key. The second input parameter s should be random,
but need not be secret—it is used to initialize a counter.

Algorithm 4.6.1 Pseudo-Random Bit Generator: InitGen.

Input: A tuple (k, s) ∈W8 ×W4.

Output: A state genState ∈ GenState.

1. genState ← (k, s, 0B16 , 16) ∈ GenState.

2. Return genState.

The next algorithm is used to generate pseudo-random byte strings.

Algorithm 4.6.2 Pseudo-Random Bit Generator: GenBytes.

Input: (n, genState) ∈ Z×GenState, with n ≥ 0.

Output: (outb, genState ′), where outb ∈ Bn and genState ′ ∈ GenState is the new
state of the generator.

1. Set
(k, s, buf , iread)← genState ∈W8 ×W4 ×B16 × {0, . . . , 16}.

2. Set outb ← λB.

3. While n > 0 do the following:

3.1 If iread ≥ 16, re-load the buffer:

3.1.1 buf ← IB∗

W∗(MARS (k, s)).

3.1.2 s← s+ 1.

3.1.3 buf ← buf ⊕ IB∗

W∗(MARS (k, s)).

3.1.4 s← s+ 1.

3.1.5 iread ← 0.

3.2 Accumulate up to 16 output bytes:

3.2.1 r ← min(iread + n, 16).

3.2.2 outb ← outb ‖ [buf ]riread .
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3.2.3 n← n− r + iread , iread ← r.

4. genState ′ ← (k, s, buf , iread).

5. Return (outb, genState ′).

For convenience, the following variation outputs word strings.

Algorithm 4.6.3 Pseudo-Random Bit Generator: GenWords.

Input: (n, genState) ∈ Z×GenState, with n ≥ 0.

Output: (outw, genState ′), where outw ∈ Wn and genState ′ ∈ GenState is the new
state of the generator.

1. Compute (outb, genState ′)← GenBytes(4n, genState) using Algorithm 4.6.2.

2. Set outw ← IW∗

B∗ (outb).

3. Return (outw, genState ′).

4.7 Entropy-Smoothing Hash Function

This section defines an entropy-smoothing hash function.

Algorithm 4.7.1 Entropy smoothing hash transformation ESHash.

Input: A tuple (k, l, s, u1, h̃1, h̃2) ∈ B∗×Z×W4×Z×Z×Z, where L(k) = 32m+40
for some integer m with m ≥ dl/16e, and 0 ≤ h̃1, h̃2, u1 < 256l.

Output: A hash value h ∈W8.

1. Set l1 ← dl/4e, l2 ← dl1/4e, l3 ← d(3l1 + 4)/16e.

2. k′ ← IW∗

B∗ (k).

3. Encode (s, u1, h̃1, h̃2) as a word string M , padding to a multiple of 16 words:

M ← pad16l3

(
s ‖ pad l1(IW∗

Z (u1)) ‖ pad l1(IW∗

Z (h̃1)) ‖ pad l1(IW∗

Z (h̃2))
)
∈W16l3 .

4. Compute a simplified SHA-1 hash (twice):

4.1 s← [k′]50.

4.2 For i = 1 to l3 do: s← CSHA1 (s, [M ]16i
16(i−1)).

4.3 s′ ← [k′]10
5 .

4.4 For i = 1 to l3 do: s′ ← CSHA1 (s′, [M ]16i
16(i−1)).

5. Encode (h̃1, h̃2) as a word string M ′, padding to a multiple of 8 words:

M ′ ← pad8l2

(
pad l1(IW∗

Z (h̃1)) ‖ pad l1(IW∗

Z (h̃2))
)
∈W8l2 .
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6. Compute

c←
l2∑
i=1

(
IF2[T ]
W∗ ([M ′]8i8(i−1))I

F2[T ]
W∗ ([k′]8i+10

8i+2 )
)

rem f ∈ F2[T ],

where f = T 256 + T 10 + T 5 + T 2 + 1.

7. Compute h← pad8(IW∗

F2[T ](c))⊕ (s ‖ [s′]30) ∈W8.

8. Return h.

4.8 AXU Hash Function

This section defines an “almost XOR-universal hash function,” denoted AXUHash.

Algorithm 4.8.1 Almost XOR-universal hash function AXUHash.

Input: A tuple (k, lastBlock ,M) ∈W∗ × {0, 1} ×B∗, where L(M) > 0, and L(k) =
5m+ 24 for some integer m ≥ Lb(dL(M)/64e).

Output: The hash value res ∈W4 of M under the key k.

1. Compute h← UOWHash([k]L(k)−8
0 , IW∗

B∗ (pad l(M))) ∈W5, where
l = 64dL(M)/64e, using Algorithm 4.9.1.

2. c1 ← IF2[T ]
W∗ ([h]40) ∈ F2[T ].

3. d1 ← IF2[T ]
W∗ ([k]L(k)−4

L(k)−8) ∈ F2[T ].

4. c2 ← IF2[T ]
W∗ ([h]54 ‖ IW∗

Z (2 · L(M) + lastBlock)) ∈ F2[T ].

5. d2 ← IF2[T ]
W∗ ([k]L(k)

L(k)−4) ∈ F2[T ].

6. res ← pad4(IW∗

F2[T ]((c1d1 + c2d2) rem f)), where f = T 128 + T 7 + T 2 + T + 1.

7. Return res.

4.9 Universal One-Way Hash Function

This section defines a universal one-way hash function.

First comes a “low level” version, denoted UOWHash, that performs no length encoding
or padding on the message input.

Algorithm 4.9.1 Universal one-way hash function UOWHash.

Input: A tuple (k,M) ∈W∗ ×W∗, where L(M) = 16n for some integer n > 0, and
L(k) = 5m+ 16 for some integer m ≥ Lb(n).

Output: The hash value h ∈W5 of M under key k.

1. Initialize h← 0W5 ∈W5, msk ← [k]16
0 ∈W16.
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2. For i = 1 to n do the following:

2.1 Compute the key index j such that i = 2jd for odd d ∈ Z.

2.2 Compute the next initial SHA-1 hash state s← h⊕ [k]5j+21
5j+16 ∈W5.

2.3 Compute a SHA-1 input block m← [M ]16i
16(i−1) ⊕msk ∈W16.

2.4 Perform the core SHA-1 state transformation: h← CSHA1 (s,m).

3. Return h.

Next comes UOWHash ′ which encodes its input in a special way before calling
UOWHash.

Algorithm 4.9.2 Universal one-way hash function UOWHash ′.

Input: A tuple (k, l, s, u1, u2) ∈ B∗×Z×W4×Z×Z, where l > 0, 0 ≤ u1, u2 < 256l,
L(k) = 20Lb(d(2dl/4e+ 4)/16e) + 64.

Output: The hash value a ∈ Z, where 0 ≤ a < 2160.

1. Set l1 ← dl/4e, l2 ← d(2dl/4e+ 4)/16e.

2. Encode (s, u1, u2) as a word string, padding to a multiple of 16 words:

u← pad16l2

(
s ‖ pad l1(IW∗

Z (u1)) ‖ pad l1(IW∗

Z (u2))
)
∈W16l2 .

3. Compute
a′ ← UOWHash(IW∗

B∗ (k), u) ∈W5,

using Algorithm 4.9.1.

4. Compute a← IZ
W∗(a′) ∈ Z.

5. Return a.

4.10 Security analysis

We analyze the security properties of the above encryption scheme.

The concrete security of our encryption scheme is straightforward, if somewhat tedious,
to analyze, based upon the arguments in [CS98] and [Sho00a]. Consider an adversary
that runs in time at most t, makes at most κ decryption requests, and presents test
messages whose length in bytes is at most l. The adversary’s advantage, AdvEnc(t, κ, l)
(as defined in §2.2) can be explicitly bounded in terms of

• the advantage the adversary has in solving the DDH (see AdvDDH, defined in
§2.5),

• the advantage the adversary has in finding second preimages in SHA-1 (see
AdvSHA, defined in §2.7), and
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• the advantage the adversary has in distinguishing MARS output from random
(see AdvMARS, defined in 2.8).

Also, we let l′ = LB(P ). Recall that q is the order of the subgroup of the multiplicative
group of units modulo P in which we are working.

Theorem 4.10.1 We have:

AdvEnc(t, κ, l) ≤ AdvDDH(O(t)) +
AdvSHA(O(t))(dl/64e+ d(2dl′/4e+ 4)/16e) +
AdvMARS(O(t), 65dl/1024e+ 7) · 2 +
2κ+ 1
q

+

κ+ 2
2128

. (1)

The running times O(t) reflect the running times of simulators that do little more than
run the adversary, plus just a little additional bookkeeping which can effectively be
ignored.

We shall prove this theorem, referring the reader at times to arguments in [CS98]
and [Sho00a]. We can assume l > 0, since otherwise the adversary’s advantage is by
definition zero.

We shall repeatedly make use of the following simple lemma, which we record here for
convenience.

Lemma 4.10.1 Let E, E′, F , and F ′ be events defined on a probability space such
that Pr[E|¬F ] = Pr[E′|¬F ′] and ε = Pr[F ] = Pr[F ′]. Then we have∣∣∣Pr[E]− Pr[E′]

∣∣∣ ≤ ε.
This follows from a simple calculation. We have

Pr[E] = Pr[E|¬F ](1− ε) + Pr[E|F ]ε

and
Pr[E′] = Pr[E′|¬F ′](1− ε) + Pr[E′|F ′]ε.

Subtracting these two equations and taking absolute values, we have∣∣∣Pr[E]− Pr[E′]
∣∣∣ = ε

∣∣∣Pr[E|F ]− Pr[E′|F ′]
∣∣∣ ≤ ε.

That completes the proof of the lemma.

Some notational conventions. Recall that a ciphertext ψ is of the form ψ =
(s, u1, u2, v, e), as described in §4.3. Recall also that π = (s, u1, u2, v) is called the
preamble of ψ, and e is called the cryptogram of ψ. In the proof below, whenever we
refer to a generic ciphertext ψ, the values s, u1, u2, v, e, as well as π, are implicitly
defined as above. Also implicitly defined is the hash value α of (s, u1, u2), as computed
in step 2 of Algorithm 4.5.1, as well as the values h̃1, h̃2, and k, as computed in step
3 of Algorithm 4.5.1. We shall always refer to the target ciphertext, i.e., the ciphertext
output by the encryption oracle in the attack, as ψ′, and the values

s′, u′1, u
′
2, v
′, e′, π′, α′, h̃′1, h̃

′
2, k
′

are analogously defined for the target ciphertext.
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The following definition is also convenient.

Definition 4.10.1 A ciphertext ψ = (s, u1, u2, v, e) is called valid if logg1
u1 =

logg2
u2, where the discrete logarithms are with respect to the multiplicative group of

units modulo P ; otherwise, ψ is invalid.

We now turn to the proof of the theorem.

Consider the attack game defined in §2.2 with respect to a specific adversary that runs
in time at most t, makes at most κ decryption requests, and submits test messages of
length at most l.

Call the original attack game G0. Let S0 be the event that the adversary guesses the
value of the hidden bit b in game G0. We have

AdvEnc(t, κ, l) =
∣∣∣Pr[S0]− 1/2

∣∣∣ . (2)

We shall make several transformations of the game, obtaining games G1, G2, etc. In
order to relate probabilities of certain events in different games, conceptually, these
games all are run on the same underlying probability distribution—only the computa-
tion rules change. In each game Gi, for i = 1, 2, etc., we let Si denote the event that
the adversary guesses the value of the hidden bit b in game Gi.

Game G1. In the first transformation, game G1, we replace the the private key by

x1, x2, y1, y2, z11, z12, z21, z22,

where each of these is chosen at random modulo q. Also, we compute the public key
as follows. We choose g1, g2 to be random numbers whose order modulo P is equal to
q. Then we compute

c← gx1
1 gx2

2 rem P, d← gy1
1 g

y2
2 rem P, h1 ← gz11

1 gz12
2 rem P, h2 ← gz21

1 gz22
2 rem P.

Further, in the decryption algorithm, we verify the ciphertext preamble (step 2 in
Algorithm 4.5.1) with the following test:

uq1 ≡ 1 (mod P ), uq2 ≡ 1 (mod P ), and ux1+y1α
1 ux2+y2α

2 ≡ v (mod P ).

Finally, in the derivation of the decryption key (step 3.2 in Algorithm 4.4.1 and step
3.2 in Algorithm 4.5.1), we compute

h̃1 ← uz11
1 uz12

2 rem P, h̃2 ← uz21
1 uz22

2 rem P.

That completes the description of game G1. We view G1 and G0 as operating on a
common probability space defined in terms of the variables

w, x, y, z1, z2,

and
x1, x2, y1, y2, z11, z12, z21, z22,

where the first set of variables are only implicitly defined in G1 and the second set of
variables are only implicitly defined in G0. Let U1 to be event that some invalid cipher-
text is not rejected in game G1. Following the arguments in [CS98], the probability
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that any single invalid ciphertext is not rejected is at most 1/q, from which it follows
that

Pr[U1] ≤ κ

q
. (3)

Also, one can easily check that so long as event U1 does not occur, the adversary’s
attack in game G1 proceeds just as in game G0. That is,

Pr[S1|¬U1] = Pr[S0|¬U1]. (4)

Now apply Lemma 4.10.1 with (E,E′, F, F ′) = (S0, S1, U1, U1), and we obtain∣∣∣Pr[S1]− Pr[S0]
∣∣∣ ≤ κ

q
. (5)

Game G2. In the second transformation, game G2, we modify the behavior of the
encryption oracle in the same way as is done in the security argument in [CS98]. That
is, in computing ψ′, instead of following the encryption algorithm, we simply choose
u′1 and u′2 as random numbers whose order modulo P divides q. Also, the encryption
oracle computes v′ using the algorithm used by the decryption algorithm:

v′ ← (u′1)x1+y1α′(u′2)x2+y2α′ rem P.

As in [CS98], one easily verifies that∣∣∣Pr[S2]− Pr[S1]
∣∣∣ ≤ AdvDDH(O(t)). (6)

Game G3. In the third transformation, game G3, we modify game G2 as follows.
Let V2 be the event that that the adversary in game G2 ever submits a ciphertext ψ
for decryption with (s, u1, u2) 6= (s′, u′1, u

′
2), but with α = α′. In game G3, we move

the computation of π′ (along with the derived values α′, h̃′1, h̃′2, and k′) to the very
beginning of the attack, and if event V2 occurs, we simply stop the attack. From the
analysis in [Sho00a], we have

Pr[V2] ≤ AdvSHA(O(t)) · d(2dl′/4e+ 4)/16e. (7)

Note that the quantity d(2dl′/4e+ 4)/16e is the number of 512-bit input blocks to the
hash function. Because of the way G3 was derived from G2, one easily verifies that

Pr[S2|¬V2] = Pr[S3|¬V2]. (8)

Applying Lemma 4.10.1 with (E,E′, F, F ′) = (S2, S3, V2, V2), we obtain∣∣∣Pr[S3]− Pr[S2]
∣∣∣ ≤ AdvSHA(O(t)) · d(2dl′/4e+ 4)/16e. (9)

Game G4. In the next transformation, game G4, we modify the encryption oracle
yet again. Instead of computing h̃′1 and h̃′2 as in the encryption algorithm, we simply
choose them as random numbers whose order modulo P divides q. Let W3 be the event
that either

• logg1
u′1 = logg2

u′2 in game G3, or

• some invalid ciphertext ψ with π 6= π′ is not rejected in game G3.
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Note that the target ciphertext ψ′ is itself invalid when logg1
u′1 6= logg2

u′2. From the
analysis in [CS98], the probability that any single invalid ciphertext is not rejected,
given that logg1

u′1 6= logg2
u′2, is at most 1/q, from which it follows that

Pr[W3] ≤ κ+ 1
q

. (10)

We can define an analogous event W4 for game G4. Note that events W3 and W4 are
not the same; nevertheless, by the analysis in [CS98], one sees that

Pr[W3] = Pr[W4] and Pr[S4|¬W4] = Pr[S3|¬W3]. (11)

Applying Lemma 4.10.1 with (E,E′, F, F ′) = (S3, S4,W3,W4), we obtain∣∣∣Pr[S4]− Pr[S3]
∣∣∣ ≤ κ+ 1

q
. (12)

Game G5. In the next transformation, game G5, we replace the derived symmetric
key k′ computed by the encryption oracle by a random key. Also, when the decryption
oracle is presented with a ciphertext ψ with π = π′, it uses the same random key k′.
By the Entropy Smoothing Theorem (a.k.a., the Leftover Hash Lemma; see Chapter 8
of [Lub96] or [IZ89]), and the fact that (h̃′1, h̃

′
2) is chosen at random from a set of size

at least 2a, where a = 2× 255 = 256 + 2× 127, we have∣∣∣Pr[S5]− Pr[S4]
∣∣∣ ≤ 2

2128
. (13)

Game G6. In the next transformation, game G6, we modify the decryption oracle as
follows. Suppose the decryption oracle is presented with a ciphertext ψ with π = π′

and L(e) 6= 0. Then we simply let the decryption oracle reject ψ. Let X5 be the event
that such a ciphertext ψ is not rejected in game G5. We claim that

Pr[X5] ≤ AdvMARS(O(t), 65dl/1024e+ 7) +
AdvSHA(O(t)) · dl/64e+
κ

2128
. (14)

From this, it will follow by an application of Lemma 4.10.1 with (E,E′, F, F ′) =
(S5, S6, X5, X5) that ∣∣∣Pr[S6]− Pr[S5]

∣∣∣ ≤ Pr[X5]. (15)

To prove (14), first recall that a cryptogram is split into 1024-byte blocks, and each
block is individually authenticated using a message authentication code (MAC). Also
note that not only is the content of each block authenticated, but also its status as the
last block, and its length (which is only relevant in case the block is the last block of the
message). Suppose the target cryptogram consists of b blocks, i.e., b = dl/1024e. Let
Y be the event that for some ψ submitted for decryption, with L(e) 6= 0 and π = π′,
either

• ψ′ has not yet been generated and the first block of e has a valid MAC, or

• ψ′ has been generated, and the first block of e that differs from that of e′ has a
valid MAC.
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We observe that
Pr[X5] ≤ Pr[Y ]. (16)

To bound Y , we make a transformational argument, defining a sequence of transformed
games G(1)

5 , G(2)
5 , G(3)

5 , and defining the events Y (i), for i = 1, 2, 3, to be the events
corresponding to Y , but in game G(i)

5 . First, we replace G5 by the game G(1)
5 in which

we halt the game as soon as event Y occurs. Clearly,

Pr[Y (1)] = Pr[Y ]. (17)

Note that in game G
(1)
5 , when the decryption oracle is presented with a ciphertext

ψ with π = π′, it never processes more than b blocks of the cryptogram e. Second,
we replace game G(1)

5 with game G(2)
5 , in which the output of the pseudo-random bit

generator in the encryption oracle is first extended (by less than 1024 bytes) so as to
cover b full blocks of text, and is then replaced by a random string of the same length.
The same random bit string is used by the decryption oracle whenever a ciphertext ψ
with π = π′ is presented for decryption. We have∣∣∣Pr[Y (2)]− Pr[Y (1)]

∣∣∣ ≤ AdvMARS(O(t), 65dl/1024e+ 7). (18)

Next, G(2)
5 is replaced by the game G(3)

5 in which the adversary is modified so as to
simply halt if ψ′ has already been generated, and the evaluation of AXUHash during
decryption of a ciphertext ψ with π = π′ and L(e) = L(e′) produces a collision in
SHA-1. Again using the analysis in [Sho00a], an application of Lemma 4.10.1 yields∣∣∣Pr[Y (3)]− Pr[Y (2)]

∣∣∣ ≤ AdvSHA(O(t)) · dl/64e. (19)

Finally, using standard arguments for message authentication codes based on universal
hashing (see, e.g., [Kra94]), one sees that

Pr[Y (3)] ≤ κ

2128
. (20)

Inequality (14) now follows directly from in inequalities (16), (17), (18), (19), and (20).

Game G7. In the final transformation, game G7, we simply modify game G6 so that
the output of the pseudo-random bit generator in the encryption oracle is replaced by
a random string of corresponding length. Then we have∣∣∣Pr[S7]− Pr[S6]

∣∣∣ ≤ AdvMARS(O(t), 65dl/1024e+ 7). (21)

It is easy to see that

Pr[S7] =
1
2
. (22)

The theorem now follows from inequalities (2), (5), (6), (9), (12), (13), (14), (15), (21),
and (22).

That completes the proof of Theorem 4.10.1
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Remarks. One should note that this reduction is quite tight.

In the above calculation, we have assumed the the random numbers used by the key
generation and encryption algorithms are perfect. If instead, a source of pseudo-random
bits is used, then to the above advantage for breaking the encryption scheme, one must
add the adversary’s advantage in distinguishing these pseudo-random bits from truly
random bits.

One strange thing about this theorem is the coefficient of 2 that appears in the
AdvMARS term. It is not clear if this “2” cannot be replaced by a “1”; however,
at the moment, we do not see how to do this.

4.11 Further discussion and implementation notes

Random oracles

As we have already mentioned in §2.4, in the random oracle model, one can replace the
DDH assumption by the potentially weaker CDH assumption. The security analysis in
this case can be found in [Sho00b]. We do not carry out a concrete security analysis in
this case, but we note that the reduction in this case is not very efficient. But since the
random oracle model is anyway a heuristic, we do not view this as a major problem.

Hiding the length of a message

Note that the encryption algorithm does not make any attempt to hide the length of a
message, and indeed, the length of the cleartext is easily calculated from the length of
the corresponding ciphertext. Thus an encryption of "yes" can easily be distinguished
from an encryption of "no". This problem is easily avoided by appropriately padding
the cleartext (e.g., encrypting "no " instead of "no"). We emphasize that it is up to
the application using the encryption scheme to format and pad cleartexts as necessary
so as to hide information that could be derived from the length of a message.

Optimizations

All five of the exponentiations performed in the decryption algorithm are to the base
u1, and hence standard algorithmic techniques can be used to compute this faster
than five exponentiations. Also note that in step 2.4 of Algorithm 4.4.1, the quantity
crdar rem P can be computed faster than two exponentiations, also using standard
algorithmic techniques. We refer the reader to §14.6 of [MvOV97] for these algorithmic
details.

Timing information

Note that in step 2.2 in algorithm Algorithm 4.5.1, we set reject to 1, and delay re-
turning from the function until later. We do this to prevent timing information from
being leaked to an adversary playing in game G0 that is not available in game G1 (see
the proof of Theorem 4.10.1). We recommend that all implementations follow a similar
practice. The point of making this transformation is to get a simpler and more effi-
cient decryption algorithm. Although this implementation prevents an adversary from
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potentially taking advantage of some “crude” timing information, we make absolutely
no claims about its security against timing attacks [Koc96] or power analysis [KJJ99]
in general.

Early detection of a corrupted ciphertext

Note that when encrypting the actual payload, we use a symmetric cipher with an
authentication code. The cryptogram is broken up into 1024-byte blocks, and each of
these is individually authenticated. This is done so that a receiver can stop processing
a corrupted stream of encrypted data almost as soon as the corruption as occured. This
seems desirable from a security point of view to the alternative approach of authenti-
cating the message as a whole, for the following reason. While decrypting a very long
message, the receiver may have to store the cleartext on disk, perhaps only to reject
it. However, while the cleartext is on disk, it may be more vulnerable than it would be
in main memory. Thus, it seems desirable to detect and reject a corrupted message as
soon as is practicable.

Note that no useful timing information is leaked to the adversary when the processing
of a corrupted stream is terminated. Intuitively, the adversary already “knows” where
the stream is corrupted.

“Salted” MARS

Note that the pseudo-random bit string is derived using MARS in sum/counter mode,
starting with the counter initialized to a random value s. The value s is chosen at ran-
dom with every encryption. This “salting” technique should have the effect in practice
of forcing any cryptanalysis on MARS to focus its efforts on individual ciphertexts.
Note that to make the proof of security in the random oracle model in [Sho00b] work,
it is essential that s be an input to the cryptographic hash in the entropy smoothing
hash function.

The multi-user/multi-message environment

As already mentioned, at least in an asymptotic sense, the definition of security we have
used implies security in a multi-user/multi-message environment. Using a standard
“hybrid” argument, one sees that security essentially degrades by a factor of

# number of users × max # of messages per user. (23)

We believe that our choices of parameters allow sufficient “head room” so that one still
obtains a meaninful level of security even considering fairly large systems of users.

Our algorithm design could be somewhat improved in this regard, however. By follow-
ing the suggestion in [BBM00] that all users work with a common group, and also by
having all users work with the same UOWH key, one gets a quantitatively better secu-
rity proof in the multi-user setting, where the security degrades by a factor proportional
to the total number of messages encrypted, which may be significantly less than (23).
However, this comes at a cost: all users must use the same defining paramaters, which
may be both inconvenient, and also introduces a new “trust” problem. Moreover, it
allows an attacker to focus all of his computational resources on a single group, which
can potentially lead to a catastrophic security lapse.
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Encrypting the empty message

We comment about encrypting the empty message. From a security point of view, it
hardly makes sense to encrypt the empty message. Nevertheless, we allow this, if only
for the sake of a flexible interface. The encryption (s, u1, u2, v, e) of the empty message
consists of an ordinary preamble (s, u1, u2, v), but an empty cryptogram e = λB. Note
that a user may create an encryption of (s, u1, u2, v, e) of a non-empty message, so
e 6= λB, and if an adversary then submits (s, u1, u2, v, λB) for decryption, the decryption
algorithm will accept this ciphertext, and generate the empty message as its decryption.
This behavior may seem a bit unusual, but still satisfies the definition of security.

Implementing the key generation algorithm

In the key generation algorithm, we have to generate a random prime q, and a random
prime P such that P ≡ 1 (mod q). To generate q, one can generate random numbers
and apply an iterated Miller-Rabin test. To get a small error probability, one must
iterate the Miller-Rabin test sufficiently many times. For this purpose, one can use the
results in [DLP93].

Once q has been generated, we can iteratively choose P at random of the desired length,
subject to P ≡ 1 (mod q), and apply an iterated Miller-Rabin test to P . Note that
the results in [DLP93] are not directly applicable, since P is not a random number of
prescribed length. Instead, to obtain a k-bit prime P congruent to 1 mod q, with an
error bound of ε, one should iterate the Miller-Rabin test t times, where 4−tk/2 ≤ ε.
Although P is not random, since P is quite large, and P > q3, one can show under the
Generalized Riemann Hypothesis that the probability that a random P congruent to 1
mod q is prime is extremely close to the probability that a random number of the same
length is prime (see Theorem 8.1.18 in [BS96]), and this is bounded from below by
2/k for all k under consideration (see the estimate, e.g., in the proof of Proposition 2
in [DLP93]). From these considerations, and the basic properties of the Miller-Rabin
test, it follows that the overall error probability will be at most ε.

This approach is a bit crude, and unfortunately, leads to a somewhat slow key gen-
eration algorithm. It would be nice if the results of [DLP93] could be generalized to
primes in arithmetic progressions, but we are unaware of any such results.

A reasonable choice of ε is ε = 2−80.

API considerations

We have designed the encryption and decryption algorithms so that they can work
with streams of data. The message to be encrypted can be presented to the encryption
algorithm as a stream, and the ciphertext can be generated as a stream. This ciphertext
stream can be fed directly in to the decryption algorithm, which produces the cleartext
as a stream.

Actually, if one employs such a streaming implementation, one must consider the possi-
bility that the adversary might adaptively choose the latter bits of m0,m1 after having
seen a prefix of the target ciphertext, also possibly interacting with the decryption
oracle in the meantime. Our proof of security does not deal with this scenario: it
assumes the adversary submits m0,m1 in their entirety before any prefix of the target
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ciphertext is obtained. However, the proof of security can be adapted to this somewhat
richer attack scenario—we leave the details to the interested reader.

5 Signature Scheme

In this section, we describe the signature scheme, which is a variant of that in [CS99].

5.1 Signature Key Pair

The signature scheme defined in this document employs two key types, whose repre-
sentation consists of the following tuples:

ACE Signature public key: (N,h, x, e′, k′, s).
ACE Signature private key: (p, q, a).

For a given size parameter m, with 1024 ≤ m ≤ 16, 384, the components are as follows:

p – bm/2c-bit prime number with (p− 1)/2 is also prime.

q – dm/2e-bit prime number with (q − 1)/2 is also prime.

N – N = pq, and has either m or m− 1 bits.

h, x – elements of {1, . . . , N − 1} (quadratic residues modulo N).

e′ – a 161-bit prime number.

a – an element of {0, . . . , (p− 1)(q − 1)/4− 1}.

k′ – element of B184.

s – element of B32.

5.2 Key Generation

Algorithm 5.2.1 generates an ACE signature key pair.

Algorithm 5.2.1 Key generation for the ACE public-key signature scheme.

Input: A size parameter 1024 ≤ m ≤ 16, 384.

Output: A public key/private key pair, as described in §5.1.

1. Generate random prime numbers p, q such that (p− 1)/2 and (q − 1)/2 are
prime, and

2m1−1 < p < 2m1 , 2m2−1 < q < 2m2 , and p 6= q,

where
m1 = bm/2c and m2 = dm/2e.

2. Set N ← p · q.
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3. Generate a random prime number e′, where 2160 < e′ < 2161.

4. Generate h′ ∈ {1, . . . , N − 1} at random, subject to gcd(h′, N) = 1 and
gcd(h′ ± 1, N) = 1, and compute h← (h′)−2 rem N .

5. Generate a ∈ {0, . . . , (p− 1)(q − 1)/4− 1} at random, and compute
x← ha rem N .

6. Generate random byte strings k′ ∈ B184, and s ∈ B32.

7. Return the public key/private key pair

((N,h, x, e′, k′, s), (p, q, a)).

5.3 Signature Representation

Consider an ACE signature public key (N,h, x, e′, k′, s), as described in §5.1. A signa-
ture of the ACE signature scheme has the form (d,w, y, y′, k̃), where the components
are as follows:

d – an element of B64.

w – an integer such that 2160 < w < 2161.

y, y′ – elements of {1, . . . , N − 1}.

k̃ – an element of B∗; note that L(k̃) = 64 + 20Lb(d(L(M) + 8)/64e), where M is the
message being signed.

We introduce the function SEncode that is used to map a signature to its byte-string
representation, and the inverse function SDecode. For integer l > 0, byte string d ∈ B64,
integers 0 ≤ w < 25621, and 0 ≤ y, y′ < 256l, and byte string k̃ ∈ B∗,

SEncode(l, d, w, y, y′, k̃) def= d ‖ pad21(IB∗

Z (w)) ‖ pad l(I
B∗

Z (y)) ‖ pad l(I
B∗

Z (y′)) ‖ k̃ ∈ B∗.

For integer l > 0 and byte string σ ∈ B∗ with L(σ) ≥ 53 + 2l,

SDecode(l, σ) def= ([σ]64
0 , I

Z
B∗([σ]85

64), IZ
B∗([σ]85+l

85 ), IZ
B∗([σ]85+2l

85+l ), [σ]L(σ)
85+2l)

∈ B64 × Z× Z× Z×B∗.

5.4 Signature Generation Operation

Algorithm 5.4.1 uses an ACE signature key pair to digitally sign messages.

Algorithm 5.4.1 ACE signature generation.

Input: A public key (N,h, x, e′, k′, s) and corresponding private key (p, q, a) as de-
scribed in §5.1, and a byte string M ∈ B∗, 0 ≤ L(M) < 264.

Output: A byte-string encoded signature σ ∈ B∗ of M , as described in §5.3.

1. Perform the following steps to hash the input data:
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1.1 Generate a hash key k̃ ∈ B20m+64 at random, such that
m = Lb(d(L(M) + 8)/64e).

1.2 Compute mh ← IZ
W∗(UOWHash ′′(k̃,M)) (using Algorithm 5.6.1).

2. Select ỹ ∈ {1, . . . , N − 1} at random, and compute y′ ← ỹ2 rem N .

3. Compute x′ ← (y′)e
′
hmh rem N .

4. Generate a random prime e, 2160 < e < 2161, and its certificate of correctness
(w, d) using Algorithm 5.5.1: (e, w, d)← GenCertPrime(s). Repeat this step
until e 6= e′.

5. Set r ← UOWHash ′′′(k′, LB(N), x′, k̃) ∈ Z (using Algorithm 5.6.2); note that
0 ≤ r < 2160.

6. Compute y ← hb rem N , where

b← e−1(a− r) rem (p′q′),

and where p′ = (p− 1)/2 and q′ = (q − 1)/2.

7. Encode the signature as described in §5.3:

σ ← SEncode(LB(N), d, w, y, y′, k̃).

8. Return σ.

5.5 Certified prime generation

The prime generation operation that is applied in Algorithm 5.4.1 produces a certified
prime e of the form 2PR + 1, 2160 < e < 2161, with a prime P, 252 < P < 253, and
an integer R. Additionally, a certificate of correctness is generated which not only
guarantees that e is prime, but also that e was generated in a highly constrained
fashion.

Algorithm 5.5.1 Certified prime generation GenCertPrime.

Input: A byte string s ∈ B32.

Output: The tuple (e, w, d) ∈ Z×Z×B64—2160 < e < 2161 and e is prime; 0 < w < e
and w acts as a “witness” to the primality of e; and d acts as a “proof” that
e was generated in a specific way.

1. Initialize s1 ← IW∗

B∗ ([s]16
0 ) ∈W4, s2 ← IW∗

B∗ ([s]32
16) ∈W4.

2. Generate a prime P , 252 < P < 253:

2.1 Generate dP ∈ B32 at random, and compute

vP ← IZ
W∗(MARS (IW∗

B∗ (dP ), s1)⊕MARS (IW∗

B∗ (dP ), s1 + 1)).

2.2 Compute a candidate integer P, 252 < P < 253: P ← (vP rem 252) + 252.
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2.3 Test if P is prime by first performing some trial division, and then
performing Miller-Rabin tests to the bases 2, 3, 5, 7, 11, 13, 23; if P is not
prime, then go to step 2.1.

3. Generate random R ∈ Z such that 2160 < 2PR+ 1 < 2161:

3.1 Select dR ∈ B32 at random, and compute

vR ← IZ
W∗(MARS (IW∗

B∗ (dR), s2)⊕MARS (IW∗

B∗ (dR), s2 + 1)).

3.2 Set lb← b(2160 − 1)/2P c, ub← b(2161 − 1)/2P c, and bnd← ub− lb.
3.3 If vR − (vR rem bnd) + bnd > 2128 then go to step 3.1.

3.4 Set R← lb+ (vR rem bnd) + 1.

4. Set e← 2PR+ 1.

5. Test if e is divisible by small primes; if so, go to step 3.

6. Set w ← 2.

7. status ← EvalPWitness(P,R, w) (see Algorithm 5.5.2).

8. If status = Reject, then generate random w ∈ {1, . . . , e− 1} and go to step 7;
otherwise, if status = Composite, then go to step 3.

9. Set d← dP ‖ dR ∈ B64.

10. Return (e, w, d).

Algorithm 5.5.2 Prime witness evaluation EvalPWitness.

Input: A tuple (P,R, w), where P is a prime such that 252 < P < 253, R is a
positive integer such that that 2160 < 2PR+ 1 < 2161, and w is an integer
with 0 < w < 2PR+ 1.

Output: status ∈ {Prime,Composite,Reject}—if status = Prime, then 2PR+1 is prime;
if status = Composite, then 2PR + 1 is composite; if status = Reject, then
2PR+ 1 may be either prime or composite.

1. Evaluate the candidate witness w:

1.1 Set e← 2PR+ 1.

1.2 If w is a Miller-Rabin witness to the compositeness of e, then return
Composite.

1.3 If gcd(w2R − 1, e) 6= 1, then return Reject.

2. Check if P and R satisfy the following conditions:

2.1 If R 6≡ m (mod 2Pm+ 1) for all integers m such that 1 ≤ m < e/(4P 3),
then return Composite; note that e/(4P 3) < 8.

2.2 Let x, y be integers such that R = 2Px+ y and 0 ≤ y < 2P ; if y2 − 4x = z2

for some z ∈ Z, then return Composite.

3. Return Prime.

35



5.6 UOWHash variants with length encoding and padding

First comes function UOWHash ′′, which pads and encodes the length of the input
before calling UOWHash.

Algorithm 5.6.1 Universal one-way hash function UOWHash ′′.

Input: A tuple (k,M) ∈ B∗ × B∗, where L(k) = 20m + 64 for some integer m ≥
Lb(d(L(M) + 8)/64e), and 0 ≤ L(M) < 264.

Output: The hash value h ∈W5 of a padded, length encoded version of M under key
k.

1. Pad M to obtain a byte string M ′ whose length is a multiple of 64, and where
the last 8 bytes of M ′ encode L(M):

M ′ ← pad l−8(M) ‖ pad8(IB∗

Z (L(M))) ∈ Bl,

where l = 64d(L(M) + 8)/64e.

2. Compute
h← UOWHash(IW∗

B∗ (k), IW∗

B∗ (M ′)) ∈W5.

3. Return h.

Next comes function UOWHash ′′′, which is a special-purpose hash function used in the
signature scheme.

Algorithm 5.6.2 Universal one-way hash function UOWHash ′′′.

Input: A tuple (k′, l, x′, k̃) ∈ B∗ × Z × Z × B∗, where l ≥ 0, 0 ≤ x′ < 256l, and
L(k′) = 20m + 64 for some m ≥ 0 such that m ≥ Lb(d(l′ + 8)/64/)e and
l′ < 264, where l′ = 4dl/4e+ L(k̃).

Output: The hash value r ∈ Z (with 0 ≤ r < 2160) of a padded, length encoded version
of (x′, k̃) under key k′.

1. Set kh ← pad l1(IB∗

Z (x′)) ‖ k̃, where l1 = 4dl/4e.

2. Set r ← IZ
W∗(UOWHash ′′(k′, kh)) (using Algorithm 5.6.1).

3. Return r.

5.7 Signature Verification Operation

Algorithm 5.7.1 uses an ACE public key to verify a signature with respect to a given
message.

Algorithm 5.7.1 ACE signature verification.

Input: A public key (N,h, x, e′, k′, s) as described in §5.1, a signature σ ∈ B∗, and a
message M ∈ B∗.
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Output: status ∈ {Accept,Reject}—if σ is a valid signature on M under the given
public key, then status = Accept; otherwise, status = Reject.

1. Decode the signature as described in §5.3:

1.1 If L(M) ≥ 264 then stop processing and signal Reject.

1.2 If L(σ) < 85 + 2LB(N) then stop processing and signal Reject.

1.3 Compute

(d,w, y, y′, k̃)← SDecode(LB(N), σ) ∈ B64 × Z× Z× Z×B∗;

note that 0 ≤ w < 25621 and 0 ≤ y, y′ < 256l, where l = LB(N).

2. Set e← VerCertPrime(s, d, w) (using Algorithm 5.7.2).

3. If e = Reject, return Reject.

4. If e = e′, then return Reject.

5. If y = 0 or y ≥ N or
y′ = 0 or y′ ≥ N then return Reject.

6. Perform the following steps to hash the input data:

6.1 If L(k̃) 6= 20m+ 64, where m = Lb(d(L(M) + 8)/64e), then return Reject.

6.2 Compute mh ← IZ
W∗(UOWHash ′′(k̃,M)) (using Algorithm 5.6.1).

7. Compute x′ ← (y′)e
′
hmh rem N .

8. Set r ← UOWHash ′′′(k′, LB(N), x′, k̃) ∈ Z (using Algorithm 5.6.2); note that
0 ≤ r < 2160.

9. If x 6≡ yehr (mod N) then return Reject.

10. Return Accept.

The certificate verification operation that is applied in Algorithm 5.7.1 checks whether
a presented integer witnesses the primality of a candidate prime of a certain form, given
by its descriptor.

Algorithm 5.7.2 Prime certificate verification VerCertPrime.

Input: The tuple (s, d, w) containing byte strings s ∈ B32, d ∈ B64, and an integer
w ≥ 0.

Output: A prime e derived from s and d, with 2160 < e < 2161, or the symbol Reject.

1. Initialize s1 ← IW∗

B∗ ([s]16
0 ) ∈W4, s2 ← IW∗

B∗ ([s]32
16) ∈W4,

dP ← IW∗

B∗ ([d]32
0 ) ∈W8, dR ← IW∗

B∗ ([d]64
32) ∈W8.

2. Compute and validate prime P :

2.1 Compute vP ← IZ
W∗(MARS (dP , s1)⊕MARS (dP , s1 + 1)).
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2.2 Set P ← (vP rem 252) + 252.

2.3 Test if P is prime by performing Miller-Rabin tests to the bases
2, 3, 5, 7, 11, 13, 23; if P is not prime, then return Reject.

3. Compute and validate the coefficient R:

3.1 Compute vR ← IZ
W∗(MARS (dR, s2)⊕MARS (dR, s2 + 1)).

3.2 Set lb← b(2160 − 1)/2P c, ub← b(2161 − 1)/2P c, and bnd← ub− lb.
3.3 If vR − (vR rem bnd) + bnd > 2128, then return Reject.

3.4 Set R← lb+ (vR rem bnd) + 1.

4. Set e← 2PR+ 1.

5. If w = 0 or w ≥ e return Reject.

6. If EvalPWitness(P,R, w) 6= Prime (see Algorithm 5.5.2), then return Reject.

7. Return e.

5.8 Security analysis

We briefly summarize the security properties of the above signature scheme. The bulk
of the analysis already appears in [CS99]. We simply fill in the details here.

Consider an adversary that runs in time at most t, makes at most κ signature requests,
with the total byte length of these messages being at most l. The adversary’s advantage,
AdvEnc(t, κ, l) (as defined in §2.3) can be computed in terms of

• the advantage the adversary has in breaking the RSA and strong RSA assump-
tions (see AdvRSA and AdvFlexRSA, defined in §2.6), the advantage the adversary
has in finding second preimages in SHA-1 (see AdvSHA, defined in §2.7), and

• the advantage the adversary has in distinguishing MARS output from random
(see AdvMARS, defined in 2.8).

Also, we let l′ = LB(N), let T ′e be the time required for a 161-bit exponentiation,
modulo a 161-bit number, and let Te be the time required for a 161-bit exponentiation
modulo N .

Theorem 5.8.1 Assuming the Generalized Riemann Hypothesis, we have:

AdvSig(t, κ, l) ≤ AdvRSA(O(t+ Teκ log κ)) · (κ+ 1) +
AdvFlexRSA(O(t+ Teκ log κ) · 1.01 +

AdvSHA(O(t)) ·
{
κ

(
90 +

l′

64

)
+

l

64

}
+

AdvMARS(O(T ′eκ), 1) · (216 + 150κ) +
κ2/2145 +
2−80.
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Call the original attack game G0. Let S0 be the event that the adversary forges a
signature in this game. We have

AdvSig(t, κ, l) = Pr[S0]. (24)

We shall make two transformation of this game, obtaining games G1, G2. In order to
relate probabilities of events in different games, conceptually, these games are all run
on the same underlying probability distribution. In each game Gi, for i = 1, 2, we let
Si denote the event that the adversary forges a signature in game Gi.

Game G1. Let U0 be the event that the adversary in game G0, the adversary presents
a forged signature σ′ such that either

U1
0 : the hash computed in step 8 of Algorithm 5.7.1, when applied to σ′, yields a

non-trivial collision with one of the hashes computed in step 8 of Algorithm 5.7.1,
when applied to some signature σ created by the signing algorithm, or

U2
0 : the key k̃ in σ′ matches that of one of the signatures σ created by the signing

algorithm, and the hash computed in step 6 of Algorithm 5.7.1, when applied to
σ′, yields a collision with the hash computed in step 1 of Algorithm 5.7.1, when
applied to σ.

Game G1 is just like game G0, except that should event U0 occur, we stop the game
without allowing the forgery to be presented.

One can show that

Pr[U1
0 ] ≤ AdvSHA(O(t)) · κ(88 + l′/64). (25)

This is obtained by using the analysis in [Sho00a], plus a “plug and pray” argument. We
guess on which of κ signatures this collision will occur, and the position of the “target”
block, i.e., on which 512-bit hash input block the collision will occur. Moreover, because
the hash inputs under consideration can vary in length, we have to guess whether the
target block is the last block of the hash input, and if it is the last block, we have
to guess exactly how many 160-bit masks (comprising k̃) there actually are (there are
at most three choices, given that the target block is the last input block). Making
these guesses, and given an instance of the second preimage problem, we generate an
appropriate prefix of the hash input, from which we can generate the corresponding
key k′ using the key reconstruction algorithm in [Sho00a]. An important feature of
of the key reconstruction algorithm in [Sho00a] that we exploit here is that it relies
only on the prefix of the hash input up to, and including, the target input block. The
adversary’s view is independent of these guesses, and if these guesses are correct, then
we solve the given second preimage problem.

Note that the above argument is a bit complicated, but it gives a numerically much
better result than the simpler, and more generic “plug and pray” argument where we
guess the signature, the length of the input to the hash function, and the position of
the target block.

One can also show that

Pr[U2
0 ] ≤ AdvSHA(O(t)) · (l + 2κ). (26)
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This is also obtained by using the analysis in [Sho00a], plus a “plug and pray” argument.
The quantity l+ 2κ is a bound on the total number of relevant hash input blocks, and
we have to guess which of these is the “target” block.

It is clear that
Pr[S1|U0] = Pr[S0|U0], (27)

and hence we can apply Lemma 4.10.1 with (E,E′, F, F ′) = (S0, S1, U0, U0), obtaining

Pr[S0] ≤ Pr[S1] + AdvSHA(O(t)) ·
{
κ

(
90 +

l′

64

)
+

l

64

}
. (28)

Game G2. This game is just like game G1, except for the way in which the primes
e generated by the signing algorithm are generated. Define bP = 214 + 38κ, bR =
215 + 112κ, and bw = 217 + 448κ. In game G2, we generate κ primes in advance, to
be used later by the signing algorithm. We use Algorithm 5.5.1 to generate primes as
in game G1. However, in this game, we stop if the event V that one of the following
occurs:

• step 2.1 in Algorithm 5.5.1 is executed more than bP times,

• step 3.1 in Algorithm 5.5.1 is executed more than bR times,

• step 7 is Algorithm 5.5.1 is executed more than bw times, or

• two of the generated primes are equal.

Let V ′ be the corresponding event, but where the strings vP and vR generated in
Algorithm 5.5.1 are truly random. Then we have

Pr[V ] ≤ Pr[V ′] + AdvMARS(O(T ′eκ), 1) · (bP + bR)
≤ κ2/2145 + 2−80 + AdvMARS(O(T ′eκ), 1) · (bP + bR). (29)

The term 2−80 comes from a calculation using Chernoff’s bound together with prime
density estimates used in [CS99]. The term κ2/2145 also comes from the prime density
estimates used in [CS99]. Both of these density estimates rely on the Generalized
Riemann Hypothesis.

Again applying Lemma 4.10.1, we see that

Pr[S1] ≤ Pr[S2] + κ2/2145 + 2−80 + AdvMARS(O(T ′eκ), 1) · (bP + bR). (30)

Note that the running time of game G2 is O(t+ T ′eκ).

Now, appealing to the proof of security in [CS99], and using a careful implementation
of the simulators in that paper, one can show that

Pr[S2] ≤ AdvRSA(O(t+Teκ log κ)) · (κ+ 1) + AdvFlexRSA(O(t+Teκ log κ) · 1.01. (31)

The term Teκ log κ in the above running times deserves some comment. In the simu-
lators described in [CS99], at a couple of points, we have to perform a computation of
the following type. Let e1, . . . , eκ be the primes generated by the signing algorithm,
and let E =

∏κ
i=1 ei. Given w ∈ {0, . . . , N − 1}, we have to compute wE/ei rem N

for 1 ≤ i ≤ κ. Naively, one could do this in time O(Teκ2). However, using a sim-
ple divide-and-conquer algorithm (see, e.g., §6 of [Sho94]), one can do this in time
O(Teκ log κ).

The theorem now follows from (24), (28), (30), and (31).
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5.9 Further discussion and implementation notes

Optimizations

In Algorithm 5.4.1, the exponentiations performed in steps 3 and 6 are well-suited for
optimization. First, since the signer knows the factorization of N , one may use the
Chinese Remainder Theorem to speed up the computation. Also, in step 3, we need to
compute the product of two powers, which can be performed using standard algorithmic
techniques significantly faster than two independent exponentiations. And in step 6,
we need to raise h to a power. Since h depends on the public key, we can condition
on h, so that raising h to a power can be done significantly faster than an ordinary
exponentiation. In Algorithm 5.7.1, in steps 7 and 9, we also need to compute products
of powers, which are subject to standard optimizations as above. We refer the reader
to §14.6 of [MvOV97] for details of all of these optimizations.

The multi-user setting

At least in an asymptotic sense, the definition of security we have used implies secu-
rity in a multi-user environment. Using a standard “hybrid” argument, one sees that
security essentially degrades by a factor portional to the number of users.

We believe that our choices of parameters allow sufficient “head room” so that one
still obtains a meaninful level of security even considering fairly large systems of users.
However, an even higher level of security could be obtained with some modification
to the basic algorithms. This would lead to somewhat more complicated algorithms,
and would require all users to share the same UOWH key, which introduces a “trust”
problem. For these reasons, we have not chosen to pursue this at the moment.

Implementation of the key generation algorithm

In the key generation step, we have to generate “strong primes” of the form p = 2p′+1,
where p′ is also prime. The number p′ is also known as a Sophie Germain prime. This
can be a fairly time-consuming computation, and some care must be taken to use an
efficient algorithm for this task.

The most naive way to do this is to generate a prime p′, and then test if 2p′ + 1 is
also prime. However, we do not recommend this approach. Rather, we recommend the
approach descrined in the full-length version of [CS99], which can easily yield a factor
of 10 speed-up over the naive method.

API considerations

We have designed the signing and verification algorithms so that they can work with
streams of data. Both the signing and verification algorithm can process the message
as a stream. However, the verification algorithm needs the to have the signature before
processing the message stream. This is a bit non-standard, and in some situations
may be a bit awkward. For most signature schemes used in practice, the verification
algorithm can process the message as a stream, requiring the signature only after
the message stream has been processed. The reason our verification algorithm needs
the signature first is that it needs the key k̃ to the universal one-way hash function
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used to hash the message. This seems unavoidable if we want to use universal one-
way hash functions instead of collision resistant hash functions, which—as we have
already argued—is quite desirable from a security point of view. One partial solution
to the problem would be to have the signer generate a key k̃ of sufficient length before
processing its message input stream, placing k̃ in its output stream before placing any
of the message bytes in its output stream. This would allow the signer’s output stream
to be bound directly to the verifier’s input stream, without requiring any significant
buffering on the part of either the signer or verifier. However, the resulting interface
would still be somewhat non-standard.

Random oracles

Although we use the strong RSA assumption, the form of the strong RSA assumption
we actually use severely constrains the adversary’s behavior: it is not free to choose an
exponent e as it pleases, but rather, it must choose e = 2PR + 1, where both P and
R are computed as the output of a one-way cryptographic transformation. As already
mentioned in 2.4, in the random oracle model, our signature scheme can be proved
secure under the RSA assumption, instead of the strong RSA assumption. Actually,
to be a bit more precise, we need to use the ideal cipher model (see [KR96]), which is
a closely related, but slightly different model of analysis. This is discussed in [CS99].

6 ASN.1 Key Syntax

For applications that use ASN.1 descriptions, like for example X.509 or PKCS#8 key
formats, it is necessary to define the algorithm identifier for the schemes defined in this
document, along with their key types. However, the corresponding object identifiers
are not defined yet, let alone registered. There are no parameters used, hence, the
associated parameters field of the algorithm identifier is of type NULL.

Version ::= INTEGER

The version number is for compatibility with future revisions of this document. It shall
be 1 for this version of the document.

6.1 Encryption Key Pair

This section defines the ASN.1 types ACEEncPubKey and ACEEncPrivKey. The corre-
sponding fields as described in §4.1 are given in comments.
An ACE encryption public key should be represented as follows:

ACEEncPubKey ::= SEQUENCE {
version Version,
prime1 INTEGER, -- P
prime2 INTEGER, -- q
num1 INTEGER, -- g1

num2 INTEGER, -- g2

num3 INTEGER, -- c
num4 INTEGER, -- d
seed1 INTEGER, -- h1
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seed2 INTEGER, -- h2

hkey1 OCTET STRING, -- k1

hkey2 OCTET STRING -- k2

}

An ACE encryption private key should be represented as the following ASN.1 type:

ACEEncPrivKey ::= SEQUENCE {
version Version,
prime1 INTEGER, -- P
prime2 INTEGER, -- q
num1 INTEGER, -- w
num2 INTEGER, -- x
num3 INTEGER, -- y
num4 INTEGER, -- z1

num5 INTEGER, -- z2

hkey1 OCTET STRING, -- k1

hkey2 OCTET STRING -- k2

}

Note that unlike in §4.1, this structure defines a “self contained” key—the decryption
algorithm needs only the data in this structure, and does need need any of the data in
the structure describing the public key.

6.2 Signature Key Pair

This section defines the ASN.1 types ACESigPubKey and ACESigPrivKey. The corre-
sponding fields as described in §5.1 are given in comments.
An ACE signature public key should be represented as follows:

ACESigPubKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- N
num1 INTEGER, -- h
num2 INTEGER, -- x
primeExp INTEGER, -- e′

hkey OCTET STRING, -- k′

primeParam OCTET STRING -- s
}

An ACE signature private key should be represented as the following ASN.1 type:

ACESigPrivKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- N
prime1 INTEGER, -- p
prime2 INTEGER, -- q
auxExp INTEGER, -- a
num1 INTEGER, -- h
primeExp INTEGER, -- e′

hkey OCTET STRING, -- k′

primeParam OCTET STRING -- s
}
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Power PC Pentium
operand size (bytes) operand size (bytes)

512 1024 512 1024
multiplication 3.5× 10−5s 1.0× 10−4s 4.5× 10−5s 1.4× 10−4s
squaring 3.3× 10−5s 1.0× 10−4s 4.4× 10−5s 1.4× 10−4s
exponentiation 1.9× 10−2s 1.2× 10−1s 2.6× 10−2s 1.7× 10−1s

Table 1: Times for basic operations

Power PC Pentium
Fixed costs Mbits/sec Fixed costs Mbits/sec

(ms) (ms)
encrypt 160 18 230 16
decrypt 68 18 97 14
sign 48 64 62 52
sign set-up 29 41
verify 52 65 73 53

Table 2: Encryption and signature scheme performance

Note that unlike in §5.1, this structure defines a “self contained” key—the signing
algorithm needs only the data in this structure, and does need need any of the data in
the structure describing the public key.

7 Performance

We report here on the performance of an implementation of our encryption and signa-
ture scheme.

We implemented both schemes in ANSI C, using the GNU GMP library to implement
the multi-precision arithmetic, although we implemented our own “sliding window”
exponentiation routine, as this was not provided in GMP.

We performed timing experiments on two platforms. The first platform is a PowerPC
604 model 43P processor running AIX. The second platform is a 266MHz Pentium
running Windows NT.

As a baseline, we first report the times for 512-bit and 1024-bit multiplication, squaring,
and exponentiation in Table 1.

Table 2 reports the performance of the encryption and signature schemes. For both
schemes, a 1024-bit modulus was used. In reporting the time to sign a message, we
break the fixed-cost time into two components. One component is the “sign set-up”
time, which is the time to perform a pre-computation that depends only on the secret
key; if many signatures are to be generated using a given key, the “sign set-up” opera-
tion need be executed only once. The other component is the “sign” time, which is the
time to generate a signature using the data computed in the “sign set-up” operation.
We also mention that roughly one third of the “sign” time is spent generating the
required 161-bit prime. For larger moduli, this time take a smaller proportion of the
whole.

Finally, we mention the time required to generate public keys (again, with 1024-bit
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moduli). The key generation algorithm for our signature scheme is a bit unusual,
since it requires the generation of primes of the form 2p′ + 1, where p′ is also prime.
This can be quite costly, and as already mentioned, some care must be taken in the
implementation of this step.

In our implementation, on the PowerPC platform, the average time for the signature
key generation algorithm is 35s, and the average time for the encryption key generation
algorithm is 11s. On the Pentium platform, the corresponding times were 36s and 14s,
respectively.
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