SFLASH, a fast asymmetric signature scheme

Statement Issued by the Authors

Nicolas T. Courtois1, Louis Goubin1 and Jacques Patarin2

1Axalto Cryptographic Research & Advanced Security,
36-38 rue de la Princesse, BP 45, 78430 Louveciennes Cedex, France
courtois@minrank.org, LGoubin@slb.com

2 PRISM, University of Versailles, France Jacques.Patarin@prism.uvsq.fr

1 Support of SFLASHv2

The revised signature scheme SFLASHv2 is one of the three asymmetric signature schemes recommended by the Nessie European consortium for low-cost smart cards (cf. NESSIE Portfolio of recommended cryptographic primitives,
https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/decision-final.pdf). As the authors of SFLASH, we would like to state that we do no longer recommend the usage of SFLASHv2.

2 New Version SFLASHv3

The parameters of SFLASH have1 to be increased: instead of 26 equations with 37 variables over $GF(2^7)$ we recommend to use a version of SFLASH with 56 equations with 67 variables over $GF(2^7)$. We also recommend to modify the hashing procedure as it was suggested by Nessie evaluation reports. A detailed specification of the new version SFLASHv3, is available at http://eprint.iacr.org/.

The new version of SFLASHv3 becomes the only version of SFLASH endorsed by the authors. We certify that SFLASHv3 is free of any deliberate hidden weakness. The best attack we are aware of on SFLASHv3 requires at least about 2^{100} CPU operations and we do not believe that there is a much faster method.

It should be noted that the intellectual property status of SFLASHv3 is identical to SFLASHv2, cf. https://www.cosic.esat.kuleuven.ac.be/nessie/ipstatements/.

Louveciennes, France, October 2nd 2003,

Nicolas T. Courtois \hspace{1cm} Louis Goubin \hspace{1cm} Jacques Patarin

1This is due to recent improved algorithms for solving random systems of quadratic equations (a.k.a. MQ problem) over $GF(2^k), k > 1$, that are not public at the time of writing [Anonymous communication].