nnnnnnnnnnnnnnnnnn

DE NAYER Instituut

J. De Nayerlaan 5

B-2860 Sint-Katelijne-Waver

Tel. (015) 31 69 44

Fax. (015) 31 74 53

e-mail: ppe @denayer.wenk.be
ddr@denayer.wenk.be
tti@denayer.wenk.be

website: emsys.denayer.wenk.be

Microblaze EDK 3.2 Tutorial

Xilinx platform Version 1.01
HOBU-Funds
Project IWT 020079
Title : Embedded systemdesign based upon
Soft- and Hardcore FPGA’s
Projectleader : Ing. Patrick Pelgrims
Projectassistants : Ing. Dries Driessens

Ing. Tom Tierens

Copyright (c) 2003 by Patrick Pelgrims, Tom Tierens and Dries Driessens. This material may be
distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0
or later (the latest version is presently available at http://www.opencontent.org/openpub/).

I Introduction

This tutorial is created to help you design your first embedded system with a Microblaze softcore
processor. Before you proceed you must have the following software and hardware:

Software:
- Xilinx ISE 5.x
- Xilinx EDK 3.2

Hardware:
- windows-PC
- Xilinx FPGA development board

Chapter Il is a general chapter where you can learn how to define your Microblaze embedded
system.

In chapter lll, there are possible 2 tracks to follow:
TRACK 1: completing the design with Xilinx Platform Studio:
Easiest way to create basic designs without clock dividers or other custom IP-cores or when
you don’t drive any additional ports on your FPGA.

TRACK 2: design in Xilinx Platform Studio, synthesis and P&R in Xilinx ISE:

This track is the easiest track to drive additional ports or to create more complex designs with
clock-dividers or your own IP-cores. By modifying the code itself, you get complete control over
the design of your embedded system.

Chapter IV describes how to finally download the embedded system into the FPGA and how to run
it.
If things don’t go as they should, you can find some hints in chapter V how to solve your problem.
The Addendum has the following chapters:

A. a general description how you can add custom IP-cores

B. an example where a clockdivider IP-block is added in Xilinx Platform Studio
C. an example where the same clockdivider is added to the VHDL-code for synthesis in ISE.

Page 2 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

Il Defining the embedded system (GENERAL)

1) start Xilinx Platform Studio (XPS) in Start -> Programs -> Xilinx Embedded Development Kit

2) select ‘New Project’in the menu ‘File’, a window will appear like figure 1:
a) fill in the path where the new project should be placed (note: do not use directories that
contain spaces in their names)
b) select the correct target device that your FPGA development board contains
c) press ‘OK’
d) Press ‘Yes’when get the warning that you haven’t specified an MHS file.

Figure 1: Create New Project Window

Create MNew Projeck . E]

— Mew Project

The project file wil be created in the curent directon if a path iz not zpecified.

Project File I|:Z"-.HdESigﬂS".l’ﬂiDrDtﬂ-ﬂEE".S}'StEI’ﬂ.HITII:I Browsze ...
Exizting MHS ta I Browse ...
Impart [Optional]

— Target Dievice
Architecture Device Size FPackage Speed Grade

[vite2 x| |we2viooiw] HE3E < |4 =]

— Peripheral Repository Directon

[T Check this box if MHS uses peripherals other than those in EDE.
inztallation area and in 'poores’ directory in the project directorny.

I Browsze ., |

] | Cancel

3) Open the Hardware Specifications window:
a) Click with your right-mouse-button on ‘System BSP (left side of the screen)
b) Click ‘Add/Edit Cores... (dialog)
c) Specify the necessary peripherals at the ‘Peripherals’tab (figure 2):
i) Add the following peripherals from the list on the right:
(1) ‘bram_block’

opb_uatrtlite’ if you have a serial connector
‘opb_jtag uart (you can of course use 2 uartlites, but in this tutorial we don’t)
ii) Correct the addresses of the peripherals:

)
)
) ‘opb_gpio’ if you have some leds on your board
)
)

Page 3 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST ’ DE NAYER INSTITUUT

HINT: XPS needs to create bus logic for the LMB and the OPB bus, so therefor you
should have a address range for each bus and the busses shouldn’t overlap each-other.
(1) For both Imb_bram_if_cntlrs change:

(a) Base Address : 0x00000000 (because Microblaze boots from here)

(b) High Address : depending on the amount of block RAMs (check the FPGA
datasheet) this should be 0x00000FFF (4kB), 0x00001FFF (8kB), 0xO0003FFF
(16kB), 0x00007FFF (32kB), 0x0000FFFF (64 kB), 0x0001FFFF (128kB),
0x0003FFFF (256kB), 0x0007FFFF (512kB) or 0xO00FFFFF (1MB). No other
values are allowed because of limitations to address-bus logic.

(2) For all ‘opb’ peripherals choose:
(a) Base Address : most significant byte(s) different than the Imb*-bus (i.e. FFFF)
least significant bytes 00.
(b) High Address : Base Address + FF

Figure 2: Add/Edit Hardware Platform Specification: Peripherals Window

Add/Edit Hardware Platform Specifications : - x|

Peripheralz | Bus Eu:unneu:tiu:unsl Ports I Farameters

EiiE Cellz with white backgrounds can be edited.

Eal To delete peripherals, choose one or more rows and click Delete. Choose one or more IPs [use ctil

and zhift for multiple selections)
from the list below and click Add.

Peripheral Hite \er | Instance | Base Address | High Address

microblaze 2.00.a jmicru:ul:ulaze_lil microblaze ﬂ
opb2dor_bridge
bram_block. 1.00.a Lll:uram_l:uh:u:k_l:l opb2plb_bridge
Imb_bram_if_cntle |1.00.b ﬂlml:u_l:uram_iF_... 000000000 | Ox0000FFFF 1 opb_arbiter
Imb_bram_if_cntle |1.00.b =] Imb_bram_if_,.. 0x00000000 0x0000FFFF 1 EEE—E:;“; i o
opb_jtag_uart 1.00.b] opb_jtag_uar... 0xFFFFO000 OxFFFFOOFF T opb_ddr
a4 |

oph_uartlite 1.00.b Llu:upl:u_uartlite_lil OxFFFFO100 | OxFFFFO1FF aph_eme

opb_ethernet
opb_ethernetlite
opb_gpio
opb_hdlc
opb_iic
opb_intc

opb_jtag_uart
opb_memncon
opb_opb_lite
opb_pci
opb_sdram
opb_zpi
opb_syzace
opb_timebaze_wdt
opb_timer
opb_uart16550 ot
opb_uartlite
opb_zbt_controller
plbZopb_bridge
plb_atme
plb_brann_if_cntr

y | | plb di fud
0k I Annuleren Toepazzen | Help J{
1 4

Page 4 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

d) Connect the Busses at the ‘Bus Connections’ tab (Figure 3):

i) On the right side add the following busses:
(1) two ‘Imb_v10_v1_00 & busses
(2) one ‘opb_v20 vi_10 b’ bus

i) now make the connections by clicking on the squares on the left:
(1) ‘microblaze_0 dimb’ on one Imb bus
(2) ‘microblaze_0 ilmb’ on the other Imb bus
(3) one ‘Imb_bram _if cntlr for each Imb bus
(4) both dopb and iopb interfaces on the opb bus
(5) all the opb peripherals on the opb bus

Figure 3 Add/Edit Hardware Platform Specifications: Bus Connections Window

Add/Edit Hardware Platform Specifications o i : x|

Peripherals Bus Connections | Farts I F'arametersl

Click on zguares to make master, slave or master-slave [M, 5, M5] connections. Choose one or more [uzing zhiftand Chl)
Right click on any buz ingtance [columi header] for a contest menu. buzes and click Add.
oo
B n. der w23 w1 00 a
B e fal w20_v1_00 b
) vl _UU
: e Irnb_+10_+1_00_a
microblaze 0 dimb ht e Add | opb_v20_vi_ 10 a
. ; " opb_v20 +1_10 b
microblaze O ilmb plb.v34. 71,01 3
microblaze 0 dopb P
bl Oionh i, Chooze the ERARM port to connect to the controller part.
mlilsalalizile D Give a name to the connection.

Imb_brarn_if_cnth_0 slmb | 2

- Zntlr Port BR.AM Pork | Caonnector
Imb_brarm_it_cnite_1 lmb 5 Imb_bram_if_c... |bram_block_0 PORTA ;I conn_0
opb_jtag_uart_0 sopb ¥ Imb_brarn_if_c... |bram_black_0 PORTE LI cann_1
opb_uartte_0 zopb ¥

] I Annuleren Toepazzen Help J/
! 2

Page 5 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

e) Configure the embedded system ports at the ‘Ports’tab (Figure 4)

i) Add all the clock signals: select all the CLK, LMB_Clk and OPB_CIk ports on your right
and press ‘<< Add. If necessary select all these ports in the list on your left by holding
the shift key and press ‘Connect’ to change their ‘net name’ specified in your .ucf-file.

i) To add the reset signals: select all SYS_Rst ports and press ‘<< Add’. You should select
these ports again and press ‘Connect’ to correct their ‘net name’ to the reset name in
your ucf-file.

iii) If you added the gpio core, you can add the port. If you connect a bus specify the
‘Range’ given as [LSB:MSB].

iv) Finally add the ‘RX’and ‘TX’ ports of the uartlite. It's best to change the default
netnames into the correct ones.

Figure 4: Add/Edit Hardware Platform Specifications : Ports Window

Add/Edit Hardware Platform Specl _ P x|

F'eripheralal Bus Conmections Ports |F'arameter$

— Port Signal Azzignments. Filter zubsztring or inztance
Ilze chil and zhift for multiple row zelections: and click Connect to connect j
portz. Uze Add Port for extemnal ports that need to be GHD o WCC.
| The "Range" columi for external ports iz given az "[LB:UBT [for e.q. [0:31]] e R e e e
more ports and Click Add
Instance Part Mame Met Mare |F'|:|Ia... |S|:|:||:|e |Range |
microblaze_0 [CLE ays_clk Input External LI T mmmmmm— ot
microblaze_0
Imb_bram_i... |LMB_Clk ays clk Input External LI CLE
Imb_bram_i,.. |LME_Clk sys_clk Input External LI << Add INTERRUPT
WaALID_INSTR
opb_jtag_... |OPE_Clk avs clk Input External LI PC_EX
opb_uartli... |OPE_Clk ays clk Input External j Add F'.:.rtl EEE_EIDH[!'LE
opb_uarklit... |Rx ri Input External LI MSE REG
opb_uartlit,,, | T# ki Qutput External LI NEW_REG_VALUE
PIPE_RUMMIMG
|ITI|:I_"\."1|:|_|:| LMB_‘:'k 5':."5_l:|k. II'II:ILIt External LI INTEREBUPT TAKEM
Irb 100 S¥5_Rsk sws st Input External ;I JUMP_TAKEM
Imb_w10_1 LME Ik, sys clk Input External ;I Del EEEEEIEEE;_&DDH
B St
Imb_»10_1 SYS_Rsk sys_rsk Input External ;I ””””””””””””””””””””
opb_v20 0 [OPE_Clk sys_clk Input External LI EET:EL?E&:EL NNNNNNNNNN -
opb_w20 0 |SY5_Rst sys_rst Input External j Connect| |Imb_bram_if_cntlr_0
LMB_Clk
Irnb_brarn_if_chtlr_1
LME_Clk
opb_jtag uart_0
OPE_Clk
Interrupt
« | _>IJ

Page 6 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INS'I'I'I'UU'I'

f) Last but not least, you have to adjust the parameters of the uartlite at the ‘Parameters’tab.
Choose the ‘opb_uartlite 0’ IP instance on your right. Then add the ‘c_clk freq’,
‘c_baudrate’and ‘c_use_parity’ parameters. Correct these figures on your left.

EXTRA: usually reset-signals are active low. By default XPS assumes reset signals to

be active high. Therefor it is absolutely necessary to change the ‘c_ext reset high’
parameter into ‘0’ of all busses.

Figure 5: Add/Edit Hardware Platform Specifications : Ports Window

Add/Edit Hardware Platform Specifications

Peripheralsi Bus Connections | Ports Parameters I

Edit Parameters azzigned ta P Instance in MHS Chooze IF Instance for a list of parameters.

These parameter values will overide defaulk MPD walues, apb._uartite_ 0 Open FOF Docl
Parameters with default values from MPD.
Parameter Yalue | Choose one or rare [uzing shift and ctl) and click Add.
C_CLK_FREQ 50000000
C_BALDRATE 115200 R | ¥alue |
C_USE_PARITY i c SuDRTABITS =
C_CLE_FREQ 125_000_000
C_BALDRATE [SQE00
<¢ Add | C_USE_PARITY 1
C_ODD_PARITY 1

Ok I Annuleren Toepaszsen Help l
o

g) You can finalize the configuration of your microblaze embedded system by clicking ‘OK’.

4) Now you have to configure the software settings by clicking with your right-mouse button on
‘microblaze 0’ of ‘System Tab’ and then select ‘'S/W Settings’. A window like fig. 6 will pop-up.

a) Atthe ‘Processor Property’tab you should change the default ‘Executable’ mode to
‘XmdStub’ mode. This is the easiest way to run and debug your first Microblaze system.

b) You should also change the ‘STDIN Peripheral’ and ‘STDOUT Peripheral’ to
‘opb_uartlite_0". Set the ‘Debug Peripheral’to ‘opb_jtag uart 0.

c) All the other variables are good by default. You can optionally change the ‘Debug Options’
at the ‘Optimization’tab to ‘Create symbols for assembly’. Hereby the compiler adds the
origninal c-code to the executable so you can see the ¢ and not the assembler-code in GDB.

Page 7 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

Figure 6: S/W Settings window

/% Settings - microblaze instan e_[il
Optirnization | Directaries I Detalz I Others
Froceszsor Property I E tevironiment

— Diriveer Configuration

Dievice Diriver ICDU
Diiver Yersion I'l A0z j
Interface Level I j

Drefault |

—Mode
" Executable & mdStub

— Communication Peripherals
STDIM Penpheral Iaph_ualtlite_[l

STDOUT Peripheral |u|:n|:u_uart|ite_[l ﬂ
Debug Peripheral |u|:n|:u_itag_uart_[l ﬂ

0K I Annulerenl Toepassen Help

5) Now it’s time to write a simple hello world program in ‘c’.

#include <stdio.h>

main ()

{
int 1i;
print (“Hello World\n\zr”); // send “Hello World” to the PC
putnum (1) ; // send the integer to the PC

}

Create a sub-directory (i.e.: code) in your project-directory and save the file above as a c-file.

Add the file by clicking with your right-mouse button on ‘Source’ (microblaze_0) and then click ‘Add
Files'.

EXTRA: If you added the GPIO core, you can use the ‘xgpio.h’library to facilate writing to and
reading from your GPIO ports. By default XPS doesn’t generate the xgpio library, to enble this
you have to disable the low-level driver by right-clicking on opb_gpio_0, choosing ‘S/W Settings
and then changing the ‘Interface Level’to 1.

H

Page 8 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER II_IS'I'ITUUT

#include "xgpio.h"
#include “xparameters.h”

main () ;

{

Xgpio var; //instanciation

Xgpio_Initialize (&var,XPAR_OPB_GPIO_O_DEVICE_ID); //initialisation
XGpio_SetDataDirection (&var, 0x00000000); //set as output

XGpio_DiscreteWrite (&var, waarde);

}

6) You can now generate the netlist by selecting ‘Generate Netlist’ in the “Tools’ menu.

7) While Platgen and XST are generating the netlist, you can create your system.ucf (pin file).

You must place it in the ‘data’directory. Basically you need the following signals in your ucf-file
for the embedded system of this tutorial:

NET “sys_clk” LOC = “H16";
NET “sys_rst” LOC = “AA2T7";
NET “rx” LOC “u28”;
NET “tx” LOC = “TI27”;

To use busses in the ucf-file, just use <0> at the end of the bus-name. Like this example

NET “gpio<0>” LOC = “H16";
NET “gpio<1>” LOC = “AA27";

Do not forget to add constraints for the clock. Otherwise the system might not be optimized for
the clock-frequency of your board.

NET "sys_clk" NODELAY;
NET "sys_clk" TNM _NET = "clk50";
TTMESPEC "TS cl1k50" = PERTOD "cl1k50" 20 ns HTGH 50 %:

It might also be useful and sometimes even necessary to define the ‘iostandard’ of all input-
output-blocks. For example:

NET “gpio<0>" TIOSTANDARD = LVCMOS18;

#low voltage digital controlled impedance:
NET “gpio<1l>"” IOSTANDARD = LVDCI_33;

NET “sys_clk” IOSTANDARD = LVDCI_18;

NET “sys_rst” IOSTANDARD = LVTTL;

HINT: do not forget to name the file ‘system.ucf’ and to put it in the ‘data’ sub-directory of the
project-directory.

Page 9 Of 23 HOGESCHOO[VOORWHEVSCH»\P&KUNSI’DE NAYER INSTITUUT

Il Completing the Design

From now on, you have two possible tracks you can follow to finish your first programmable
embedded design:

TRACK 1: completing the design with Xilinx Platform Studio:

Easiest way to create basic designs that contain clock dividers or other custom IP-cores or
when you don’t drive any additional ports on your FPGA. More complex designs are possible,
but are more inconvient to implement.

TRACK 2: design in Xilinx Platform Studio, synthesis and P&R in Xilinx ISE:

This track is the easiest track when your design contains additional static ports or when your
design is more complex (clock-dividers, own IP-cores, ...). By modifying the generated toplevel-
HDL-code itself, you get complete control over the design of your embedded system.

TRACK 1 TRACK 2

Define
Microblaze Embedded System
(chapter Il)
[Generate Netlist]
Add
Custom IP block
(addendum B)
Manually add IP-core
to HDL-topfile
Synthesi d
Generate Netlist [ggR?Nsi[[zhelgré }
Generate Bitstream
(chapter 1) l
Import bitstream
into XPS
Download & Debug
(chapter 1V)

Page 1 0 Of 23 HOGESCHOO[VOORM’[TEVSCHAP&KUNSI’DE NAYER INSTITUUT

TRACK 1 Completing the design with Xilinx Platform Studio

1) By default you can generate a bitstream of your embedded system in XPS by clicking on
‘Generate Bitstream’ in the ‘Tools’ menu.

HINT: If for some reason this item is disabled, you can enable it back by clicking ‘Project
Options’in the ‘Options’ menu. At the ‘Hierarchy and Flow’tab you can change the
‘Implementation Tool Flow’back to ‘XPS (Xflow)’ as figure 7 shows.

Figure 7: Project Options Window

Project Options B i il

Device and Bepository Hierarchy and Flow | HDL and Simulation |

— Design Hierarchy

% Thiz iz the toplevel of my design
" Thiz iz a sub-module in my design

Top Instance

— Metlizt Generation
" Flatter Metlist [IUzes built-in Synthesis Tool)
* Hierarchical Synthesiz Tool IISE #5T j

— Implementation T ool Flow TRACK 2
,f:' #PS o] ™ ISE [ProjMav] 4/

/ [T Add modules ta existing HEL file
TRACK 1

HEL Eile IE:'\Hdesignshmicrnblazehprninav'\system. |

0] Bnnuleren | Help |

2) After XPS created the bitstream, you can compile and add the XMDSTUB (for connection with
the Microblaze) to the bitstream by clicking ‘Update Bitstream’in the ‘Tools’ menu.

You have now finished building your embedded system in XPS and can proceed to chapter IV

Page 1 1 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

TRACK 2 Synthesis and P&R in Xilinx ISE

1)

Change the default Implementation Tool Flow’ of XPS by clicking ‘Project Options’in the
‘Options’ menu. At the tab ‘Hierarchy and Flow’you can enable the ‘ISE (ProjNav)’ flow, like on
Figure 6.

Export the XPS project to ISE by clicking ‘Export to ProjNav’in the ‘Tools’ menu.

After XPS created an ISE-project, you can start the Xilinx ‘Project Navigator in ‘Start’ >
programs’ > ‘Xilinx ISE 5’

Open the project XPS created by ‘File’> ‘open project’ Then select ‘system’ which is located
in the sub-directory ‘projnav’ of your project-directory.

You can now make changes to the system topfile ‘system.vhd’. This file is located in the ‘hadl’
sub-directory. The easiest way to make changes is to alter the ‘system.vhd’file.

HINT: It is recommended to backup the original ‘system.vhd’ and the final ‘system.vhd’. The
reason why is that the commonly used ‘clean all’command in XPS erases all files and
directories generated by XPS and that includes the ‘hdl’ directory.

Before you generate the bitstream in ISE, make sure the project includes the ucf-file and the
bram_init.omm (A BMM file is a Block RAM Memory Map file in ASCII format and describes the
organization of Block RAM memory.) file. By default you only have to add the ucf-file. Add this
file by right-clicking the ‘Sources in Project’ window in the upper-left corner and then choose
‘Add Source’. You can now select the ucf-file and press ‘Open..

To generate the bitstream, click on the topfile ‘system’in the ‘Sources in Project’ window (fig. 8).
Then double-click ‘Generate Programming File’in the ‘Processes for Current Source’ window.

Figure 8: Sources in Project Window

2=
Sources in Project: |
o E system
= E:E woy1000-4FF396 - 5T WHDL
= @ gpztem [C:\edesignzimicroblazehhdlhaystem, vhd]

------ C:hwdezsigngimicroblazeimplementation'branm_init. brim

------ @ C:hwdezigngimicroblazedatatsystem. ucf

= @ divZ_ip_0_wrapper [C:\edezignz‘microblazebhdlhdivZ_ip_0_wrapper. vhd)
= @ divZ_ip [C:hwdezignsmicroblazebpooreshdivZ_iphhdlwhdldiveZ_ip.vhd]

N B itodule View l X Snapzhot e I TD Libirary Wiew I

8)

After the bitstream has been succesfully generated, switch back to XPS and import the
bitstream by clicking ‘/mport from Project Navigator’in the ‘Tools’ menu (figure 9). By default the
location of the BIT file is good (\projnav\system.bit). You only have to select the correct BMM
file which is located in the ‘implementation’ subdirectory and is called ‘bram_init_bd.bmm".

Page 1 2 Of 23 HOGESCHOO[VOORM’[TEVSCHAP&KUNSI’DE NAYER INSTITUUT

Figure 9: Import from Project Navigator Window

Import from Project Mavigator El

Impart & implemented dezign into the project
Filez will be copied inta implementation directany

BIT File: Is"smicrnblazehpruinav'ﬁsystem.I:uit |

B File: I|:|Iementatiunhbram_init_l:ud.I:umm |

ak | Cancel I

9) You now have to update the bitstream to include XMDSTUB program. Just click ‘Update
Bitstream’to compile and include it.

Page 13 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

IV Download and debug (GENERAL)

1) First make sure you correctly connected the downloadcable (parallel cable 1V, ...).

2) Start IMPACT Start 2 programs 2 Xilinx ISE 5 2 Accessories =2 iIMPACT

Now the connection wizard opens the ‘Operation Mode Selection’ window. By default the
“configure devices’ is good, so press ‘Next..

Configure device with “Boundary-Scan Mode” is OK, so press ‘Next..
‘Automatically connect to cable and identify Boundar-Scan chain’ is good again, so press ‘Next..

If all goes well, IMPACT identifies all devices on your board and asks to assign the
configuration file. When the target device is selected, assign the ‘download.bit’ file which is
located in the ‘implementation’ sub-directory. All other devices of your board don’t need to be
reprogrammed, so select ‘cancel.

Finally right-click the target FPGA in the Boundary Scan chain and select ‘Program...” and then
click on ‘OK’. IMPACT will now download the bitstream to the FPGA.

HINT: When you finished downloading, close iMPACT because it interferes with the XMDSTUB
connection.

Next thing to do is to compile the ‘Hello World’ program. Because of the XMDSTUB mode that
was selected in chapter II, only the connection software (XMDSTUB) is compiled and
downloaded together with the bitstream. This way, you can easily change the software without
completely generating a new bitstream file. To compile your program, click ‘Compile Program
Sources’in the ‘Tools’ menu. After compilation you can see how much your program takes
down below in the console window. Make sure it doesn’t exceed the amount of memory you
have in your embedded system.

Now open ‘XMD’in the ‘Tools’menu. XPS will open a Xygwin command window. To make
connection with the Microblaze XMDSTUB, type:

Xilinx Microprocessor Debug (XMD) Engine

Xilinx EDK 3.2.1 Build EDK_Cm.19

Copyright (c) 1995-2002 Xilinx, Inc. All rights reserved.
XMD% mbconnect stub -comm jtag

It is possible you must also specify the position of the FPGA (i.e. —posit 2)
At the end there should be the following message:

Connecting to XMD stub..

XMD communication stub initialized. Version No: 2

Communicating with XMD stub on target board

Connected to MicroBlaze "stub" target. id = 0

Starting GDB server for "stub" target (id = 0) at TCP port no 1234

Don't close this window until you’ve finished communication with the microblaze.

Page 1 4 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

10)Open a terminal and set the correct parameters (115kbaud, no parity, no hardware flow). Also
make sure you connected your serial port with the board.

11)In XPS, open the ‘Software Debugger’in the ‘Tools’menu. A GDB window will appear. In You
can now run the hello world program by selecting ‘Run’in the ‘Run’menu. Make sure ‘Target’is
‘Remote/TCP : XMD’, ‘hostname’is ‘localhost’ and ‘port’is ‘1234’ After a few seconds GDB has
made connection and will execute your program. The terminal should display ‘Hello World’ and
‘00000000’ like in figure 10. If you want you can add breakpoints and step the program.

Figure 9: Hello World terminal

#microblaze - HyperTerminal _ | |:||1|

Bestand Bewerken Beeld Gesprek Verplaatsen Help

=
Hello YHorld
ABeNBR06_
Wwerbonden: 0:00:39 |nut0detectie 115200 3-M-1 SCROLL |CAPS |NUM |Opnemen Printer 4

Page 1 5 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

V Solutions for Problems and Errors

We have experienced quite a few difficulties when building our first Microblaze embedded system.
A few things we encountered and you may want to check:
e Has the uartlite the correct baudrate and clockspeed-parameters? (don’t use _ in the
clockspeed parameter)
e You’re system might be permanently resetting, so check if you have correctly set the
‘c_active_high_reset’ parameter of the Imb and opb bus.
e Is your clock too fast for your system? Make sure you’ve added constraints to your ucf file as
described in chapter Ill.
e Is your memory too small for your program? Make sure you’ve used the maximum of
blockRAMs possible. Try to find some code you can leave out. Always start with a simple
Xil_printf(“Hello World\n\r”);".

For more troubleshooting go to http://support.xillinx.com or to the Xilinx embedded processor
forum: http://toolbox.xilinx.com/cqi-bin/forum?14@@/Embedded%20Processors.

Page 1 6 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

ADDENDUM

Xilinx platform Version 1.0

Page 1 7 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

A. General description how to add custom IP-cores

You have two possibilities to add your own IP-cores to a Microblaze embedded system:
e (Create your own XPS compatible IP-core
e Manually add your IP-core to the toplevel VHDL-code.

The flows are explained by the flowcharts below. As you may notice track 2 has a less complicated
flow. Therefor it is recommended to use track 2.

Both tracks are illustrated in a clockdivider example in chapter B (TRACK 1) and C (TRACK 2).

They reason why we used clockdividers is because they are commonly used in programmable
embedded systems to alter the development board clockfrequencies.

TRACK 1 TRACK 2

Create proper
directorv structure

[Generate Netlist]

Write Write Write or copy
[0ao file] [.mnd file] [VHDL file } Manually add IP-core
to VHDL-topfile
Add IP-core to Synthesize and
embedded svstem P&R with ISE

l l

[Connect IP-core bus & ports } [Import bitstream]

with embedded system into XPS

l

Generate
Bitstream

Page 1 8 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

B. Adding the clockdivider to the design for Xilinx Platform Studio (TRACK 1)

1) First you will need to create the proper directory structure. You should create a new sub-
directory in the sub-directory ‘pcores’ of the project-directory. Figure 1 gives an example of the
directory-structure you must create.

Figure a: proper directory structure

EIJ prores
- B+ bram block_v1_00_a
= dive i Must be same name as
T too entitv of vour IP-core!
..... _I data
=1 hd
fed] whdl

2) Create a new file in the ‘data’ directory:
a) div2 ip v2 0 0.pao’ ltis essential that the name ends on v2_0_0. Otherwise the file won'’t
be recognized. This file contains all the libraries that the wrapper should use. In our simple

example we don’t really need this feature, but without a file XPS will not work. Just put the
following line in the file:

1ib div2_ip div2_ip

b) Create a ‘div2_ip_v2_0_0.mpd’file. This file describes the ip-core. In this example we only
describe a simple clockdivider. So the file should look like:

BEGIN div2_ip, IPTYPE=IP, HDL=VHDL

PORT sys_clk = "", DIR=in
PORT div2_out = "", DIR=out
END

3) The biggest part is to write a new VHDL-file. Of course you may import your own clockdivider
IP-core, but if you don’t have one, you can use this example. There are several ways to write a
clockdivider. In this example we modify a DCM-module. The example is a clockdivider which
divides the clock in 2. To change the rate, simply change the ‘clkdv_divide’ parameter. Possible

values are: 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0

Page 1 9 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

library ieee;
use ieee.std_logic_1164.all;

entity divZ2_ip is
port (
sys_clk : in std_logic;
div2_out : out std_logic);
end entity div2_ip;

architecture div2_ip_arch of div2_ip is

component DCM
—— synthesis translate_off

generic (CLK_FEEDBACK :string := "1X";
CLKDV_DIVIDE : real := 2.0;
CLKFX_DIVIDE : integer :=1;
CLKFX_MULTIPLY : integer := 1;
CLKIN_DIVIDE_RBY_ 2 : boolean := FALSE;
CLKOUT_PHASE_SHIFT: string := "NONE";
DESKEW_ADJUST: string := "SYSTEM_SYNCHRONOUS";
DFS_FREQUENCY_MODE: string := "LOW";
DLL_FREQUENCY_MODE: string := "LOW";
DSS_MODE: string := "NONE";
DUTY_CYCLE_CORRECTION : Boolean := TRUE;
FACTORY_JF : bit_vector := X"C080";
PHASE_SHIFT: real := 0;
STARTUP_WAIT :boolean := FALSE);
—-— synthesis translate_on
port (CLKIN : in std_logic;
CLKFB : in std_logic;
DSSEN : in std_logic;
PSINCDEC : in std_logic;
PSEN : in std_logic;
PSCLK : in std_logic;
RST : in std_logic;
CLKO : out std_logic;
CLK90 : out std_logic;
CLK180 : out std_logic;
CLK270 : out std_logic;
CLK2X : out std_logic;
CLK2X180 : out std_logic;
CLKDV : out std_logic;
CLKFX : out std_logic;
CLKFX180 : out std_logic;
LOCKED : out std_logic;
PSDONE : out std_logic;
STATUS : out std_logic_vector (7 downto 0)

) i
end component DCM;

Page 20 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

component BUFG
port (

out std_logic;

in std_logic

)
I

) £

end component;

signal div2_i std_logic;
signal div2_int std_logic;
signal clkO_1i std_logic;
signal clkO_int std_logic;
begin
div2_inst: DCM
port map (
CLKIN => sys_clk,
CLKFB => clk0_1i,
DSSEN => '0"',
PSINCDEC => '0"',
PSEN > '0',
PSCLK => '0°',
RST => 'Q',
CLKO => clkO_int,
CLK90 => open,
CLK180 > open,
CLK270 > open,
CLK2X > open,
CLK2X180 => open,
CLKDV > div2_int,
CLKEFX > open,
CLKFX180 > open,
LOCKED => open,
PSDONE => open,
STATUS => open
)i
BUFG_TI BUFG
port map (
O => clkO0_1i,
I => clk0O_int
)i
BUFG_N BUFG
port map (
O => div2_1i,
I => div2_int

)

div2_out <= div2_1i;

end architecture div2_ip_arch;

Page 21 of 23

HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

4) Open XPS, open the project, right-click on ‘System BSP’and select ‘Add/Edit Cores...(dialog)".
There you will notice that the ‘div2_ip’core has been added to the list of IP cores. So now you
only have to add it and connect the ports at the ‘ports’tab.

HINT: Make sure you adjusted the ‘c_clk_freq’ parameter of the uartlite at the parameter’ tab to
the new frequency.

Page 22 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

C. Manually adding the clockdivider to the code for synthesis & P&R in ISE (TRACK 2)

1) To begin, you must create or copy a clockdivider VHDL file. You can use a clockdivider you
have used for other projects or you can use the clockdivider which is used in chapter B.
You can either copy this VHDL file in the ‘hdl’ subdirectory or add the file to the ISE project.

2) Because we need to manually add the clockdivider to the ‘system.vhd’ topfile, we need to first
generate the topfile. Therefor complete chapter Il of the tutorial.
In this example we will add the clockdivider of chapter B of this addendum.
a) First you have to define the clock divider ip module. To do this, add the following lines right
after ARCHITECTURE IMP OF system IS’:

component div2_ip is
port (
sys_clk : in std_logic;
div2_out : out std_logic);
end component;

b) Next thing to do is disabling the buffer for the incoming clock signal. Normally this
instantiation is located at the end of the file. Just search for the incoming clock signal name
and disable the module by erasing the code or put some — before the lines. Remember the
output signal name of the buffer module. (<clock-signal-name>_BUFGP)

c) Finally add the clockdivider module (for convenience, at the end of the file). It should look

like:
clkdiv : div2_ip
port map (
sys_clk => sys_clk,

div2_out => sys_clk_BUFGP);

To proceed, just follow chapter Il and IV of the tutorial.

Page 23 Of 23 HOGESCHOOLVOOR WETENSCHAP & KUNST | DIE NAYER INSTITUUT

