
Sizing up the threshold

Challenges and opportunities in the standardization of

threshold schemes for cryptographic primitives

Apostol Vassilev and Luís Brandão, joint work w/ Nicky Mouha

National Institute of Standards and Technology (Gaithersburg, United States)

2nd Theory of Implementation Security Workshop

January 09, 2018 (Zurich, Switzerland)

1

The cybersecurity challenge today

Key finding:

the overall cybersecurity picture
remains grim;

Key recommendations:

- encrypt sensitive data

- patch promptly

2

Image source: http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/

2

Observation

➢security relies on keys

- must be unpredictable and

inaccessible to attackers

➢whole keys are stored in some place(s)

- on a single computer

➢black-box assumption

- theory and practice

- two different stories

In modern cryptography the algorithms are known

Image source: https://xkcd.com/257

3

3

Real-world examples of black-box failures

4

It is essential to have reliable implementations of cryptographic primitives, e.g., encrypt,

sign, generate randomness, immune to breaches in the computational environment

Heartbleed bug (2014)
Server private key revealed

“ZigBee Chain reaction” (2017)
Phillips Hue light-bulbs secret key revealed

Bellcore attack (1997) on RSA-CRT
An injected fault corrupts part of computation, enabling

factorization of the modulus and private key compromise.

Image source: Schmidt, Hutter: Optical and EM Fault-

Attacks on CRT-based RSA: Concrete Results

Image source:

heartbleed.com

Image source: https://regmedia.co.uk/2

015/09/24/segula_bulb_648.jpg

Meltdown & Spectre (2017)
All memory (including keys) revealed

https://www.windowscentral.com/all

-modern-processors-impacted-new-

meltdown-and-spectre-exploits

4

Can we

standardize

threshold

schemes to

promote their

use in real life

as a way to

improve

security

Image source:

https://pngimg.com/download/18792

5

5

NIST cryptographic standards: why do they matter?

6

NIST develops standards for crypto primitives (a.k.a. approved primitives).

• Digital signature

• Encryption

• Hash

• PRGen

• Key establishment

• Key derivation

By law (FISMA 2002, 2014), crypto primitives used in federal systems must be NIST-approved and their implementation must be

FIPS 140-2 validated

• Validation means the security assertions specified by the standard for a specific primitive implementation must be tested and verified to hold

Industries and countries have also voluntarily adopted FIPS 140-2 validations

• financial

• Canada

6

Current "FIPS 140-2" validation process / CMVP

7

Vendor

Designs and

Produces
Hardware · Software · Firmware

Define Boundary

Define Approved Mode

of operation

Security Policy

CST Lab

Tests for

Conformance
Derived Test Requirements

CAVP Algorithm Testing

Documentation Review

Source Code Review

Operations and Physical

Testing

CMVP
NIST and CSEC

Validates

Review Test Results

Ongoing NVLAP

Assessment

Issue Certificates

NIST Cost Recovery Fee

User

Specifies and

Purchases

Security and

Assurance

Applications or products

with embedded modules

Legend:

- CAVP = Cryptographic Algorithm Validation Program

- CMVP = Cryptographic Module Validation Program

- CSEC = Communications Security Establishment (Canada)

- CST = Cryptographic and Security Testing

- FIPS = Federal Information Processing Standards

- NIST = National Institute of Standards and Technology

- NVLAP = National Voluntary Laboratory Accreditation Program

Human-centric approach to

testing and validation

7

What can go wrong?

Long Validation Cycles
Well beyond product development cycles

Hinder adoption of new technology by the Federal Government

Shallow Depth of Testing
Software and hardware testing methodology inadequate for today’s complexity of crypto implementations

Costly and Rigid
Difficult to obtain compliance assurance on platforms of actual use

Limits the industry’s efforts to validate more products

Prevents the industry from fixing critical problems, e.g. CVE,

without breaking program rules, i.e. hinders rapid patching by relying organizations

Impossible to fix within the existing box
Some improvements help but fall short of solving the problems

8

Image source: https://pixabay.com/en/thinking-

out-of-the-box-2958103

8

Automate as much as possible

Powerful economic incentives for the industry

• Reduce the validation cycle length

• Increase the depth of testing

• Enable Just-In-Time validations

• Reduce the cost of validations

9

Image source: https://pixabay.com/en/mechanics-hand-finger-touch-2170638/

9

Future CMVP Validation Structure

ACV

Client

Device under test

Crypto

Module
Test

vectors

Seed

Responses

Vendor ACV Server

NIST ACVTS Server

ACV Protocol

Legend:

- ACV = Automated Cryptographic Validation

- API = Application Programming Interface

- CMVP = Cryptographic Module Validation Program

- JSON = JavaScript Object Notation

- KAT = Known-Answer Test

- REST = Representational State Transfer

- ACVTS = Automated Crypto Validation Testing Service

ACV Proxy/Server:

● Web hosted service

● Interacts with NIST ACV Server to obtain JSON

KAT data

● Optionally generates JSON test vectors

● Optionally performs results verification

● Reports JSON KAT results to NIST ACV Server

Validation Authority Server:

● Web hosted service w/ REST API

● Registers ACV Servers

● Generates JSON KAT vectors

● Validates JSON KAT results

● Publishes validation results from

trusted vendor ACV Servers

ACV Client:

● Integrated into Device under test

● May convert JSON test vectors to

format acceptable by crypto

module under test

● Returns KAT answers to ACV

server in JSON format

Computer-based testing and validation 10

10

Where are we today?

Making progress towards the desired goals

- ACVP actively developed - https://github.com/usnistgov/ACVP
- NIST team (feds and contractors) in place and funded, collaborating w/ Cisco

- Open to others to join in

- Targeting replicating complete CAVP testing in Q3, 2018

- Pilot CMVP validations started
- One open source module (Red Hat, NSS lib), one proprietary (Apple)

- Targeting rolling out CMVP auto validation in Q2, 2019.

- Actual date depends on findings in pilot validations

- Vendor Criteria for participation has been developed
- Coordinated with NVLAP at NIST

- Targeting criteria rollout in Q2, 2018

- Public update planned for ICMC 2018 , May 8-11 2018, Ottawa, Canada

See also the high-level public project plan at http://csrc.nist.gov/projects/acvt/ for further details

11

11

Outline

1. Introduction: we need reliable crypto

2. Validating a crypto module (the CMVP at NIST)

3. The threshold approach

4. Characterizing a threshold scheme

5. The threshold validation challenge

6. Concluding remarks

12

12

Threshold approach (high level idea)

13

13

Threshold approach (high level idea)

Use redundancy & diversity to mitigate the compromise of

some (up to a threshold number of) components (a.k.a. nodes)

13

The red dancing devil is from

clker.com/clipart-13643.html

14

Threshold approach (high level idea)

Use redundancy & diversity to mitigate the compromise of

some (up to a threshold number of) components (a.k.a. nodes)

13

The intuitive aim: improve security

vs. a non-threshold scheme

The red dancing devil is from

clker.com/clipart-13643.html

15

Threshold approach (high level idea)

Use redundancy & diversity to mitigate the compromise of

some (up to a threshold number of) components (a.k.a. nodes)

13

clker.com/clipart-10778.html

The intuitive aim: improve security

vs. a non-threshold scheme

(depends on adversarial model)

The red dancing devil is from

clker.com/clipart-13643.html

16

Threshold approach (high level idea)

Use redundancy & diversity to mitigate the compromise of

some (up to a threshold number of) components (a.k.a. nodes)

13

clker.com/clipart-10778.html

Our current step: devise initial questions for

discussion towards standardization and validation

of threshold-cryptography* related schemes.
Image adapted from:

openclipart.org/detail/283392

The intuitive aim: improve security

vs. a non-threshold scheme

(depends on adversarial model)

The red dancing devil is from

clker.com/clipart-13643.html

17

Threshold approach (high level idea)

Use redundancy & diversity to mitigate the compromise of

some (up to a threshold number of) components (a.k.a. nodes)

13

clker.com/clipart-10778.html

Our current step: devise initial questions for

discussion towards standardization and validation

of threshold-cryptography* related schemes.

* We may use “threshold cryptography” as a shorthand for threshold approaches applied

to crypto primitives, and “threshold <primitive> scheme” for specific constructions.

Image adapted from:

openclipart.org/detail/283392

The intuitive aim: improve security

vs. a non-threshold scheme

(depends on adversarial model)

The red dancing devil is from

clker.com/clipart-13643.html

18

Threshold approach (high level idea)

Use redundancy & diversity to mitigate the compromise of

some (up to a threshold number of) components (a.k.a. nodes)

13

clker.com/clipart-10778.html

Our current step: devise initial questions for

discussion towards standardization and validation

of threshold-cryptography* related schemes.

Several related research areas: threshold cryptography; secure multi-party computation; intrusion-tolerant protocols; fault-

tolerant and side-channel-resistant circuits; leakage models; secret-sharing schemes (possible arbitrary access structures); …

* We may use “threshold cryptography” as a shorthand for threshold approaches applied

to crypto primitives, and “threshold <primitive> scheme” for specific constructions.

Image adapted from:

openclipart.org/detail/283392

The intuitive aim: improve security

vs. a non-threshold scheme

(depends on adversarial model)

The red dancing devil is from

clker.com/clipart-13643.html

19

Illustrative example(s)

14

20

Illustrative example(s)

3-out-of-3 encryption
3-out-of-3 nodes needed to produce

a ciphertext; key is secret if at least

1 component does not leak.

14

21

Illustrative example(s)

3-out-of-3 encryption
3-out-of-3 nodes needed to produce

a ciphertext; key is secret if at least

1 component does not leak.

Does a threshold scheme provide better security than a non-threshold one?

14

22

Illustrative example(s)

3-out-of-3 encryption
3-out-of-3 nodes needed to produce

a ciphertext; key is secret if at least

1 component does not leak.

Does a threshold scheme provide better security than a non-threshold one?

• Are there common failure modes (e.g., is breaking 1 equivalent to breaking 3)?

• Fault tolerance: two cannot break secrecy, but can one alone break integrity!?

• Is plaintext secrecy affected? (how does the client send it: whole or shared?)

• May the implementation bring new security problems?

14

23

Illustrative example(s)

3-out-of-3 encryption
3-out-of-3 nodes needed to produce

a ciphertext; key is secret if at least

1 component does not leak.

Does a threshold scheme provide better security than a non-threshold one?

2-out-of-3 signature
2 nodes needed to produce a signature;

correct and key secret if at least 2

nodes are correct and do not leak.

• Are there common failure modes (e.g., is breaking 1 equivalent to breaking 3)?

• Fault tolerance: two cannot break secrecy, but can one alone break integrity!?

• Is plaintext secrecy affected? (how does the client send it: whole or shared?)

• May the implementation bring new security problems?

• Even if independent failure mode: can breaking 2 out of 3 be easier than 1 out of 1?

14

24

Illustrative example(s)

3-out-of-3 encryption
3-out-of-3 nodes needed to produce

a ciphertext; key is secret if at least

1 component does not leak.

Does a threshold scheme provide better security than a non-threshold one?

“k-out-of-n” is not a sufficient characterization

to enable a comprehensive security assertion.

2-out-of-3 signature
2 nodes needed to produce a signature;

correct and key secret if at least 2

nodes are correct and do not leak.

• Are there common failure modes (e.g., is breaking 1 equivalent to breaking 3)?

• Fault tolerance: two cannot break secrecy, but can one alone break integrity!?

• Is plaintext secrecy affected? (how does the client send it: whole or shared?)

• May the implementation bring new security problems?

• Even if independent failure mode: can breaking 2 out of 3 be easier than 1 out of 1?

14

Image sources:

clker.com/clipart-*.html,

for * in {encryption, 3712}

25

One metric of security: reliability

15

26

Probability that a security property (e.g., secrecy or integrity) never fails during a mission time

One metric of security: reliability

15

27

Probability that a security property (e.g., secrecy or integrity) never fails during a mission time

A possible model: nodes fail independently, with constant rate probability.

Example: ETTF

per node under

attack is 1 month

One metric of security: reliability

15

(ETTF = Expected time to failure)

28

Probability that a security property (e.g., secrecy or integrity) never fails during a mission time

(Higher is better)

Mission

time

A possible model: nodes fail independently, with constant rate probability.

Example: ETTF

per node under

attack is 1 month

One metric of security: reliability

15

ETTF of <1,0>

(ETTF = Expected time to failure)

n nodes; tolerating

up to f faulty nodes.

29

Probability that a security property (e.g., secrecy or integrity) never fails during a mission time

(Higher is better)

Mission

time

BFT (Byzantine fault tolerance) often

requires n  3f+1 (or  2f+1 with special

assumptions) to tolerate f faults.

A possible model: nodes fail independently, with constant rate probability.

Example: ETTF

per node under

attack is 1 month

One metric of security: reliability

15

ETTF of <1,0>

(ETTF = Expected time to failure)

n nodes; tolerating

up to f faulty nodes.

30

Probability that a security property (e.g., secrecy or integrity) never fails during a mission time

(Higher is better)

Mission

time

BFT (Byzantine fault tolerance) often

requires n  3f+1 (or  2f+1 with special

assumptions) to tolerate f faults.

For 3 days:

R4,1(0.1) ≈ 0.95

R1,0(0.1) ≈ 0.91
(Better)

A possible model: nodes fail independently, with constant rate probability.

Example: ETTF

per node under

attack is 1 month

One metric of security: reliability

15

ETTF of <1,0>

(ETTF = Expected time to failure)

n nodes; tolerating

up to f faulty nodes.

31

Probability that a security property (e.g., secrecy or integrity) never fails during a mission time

(Higher is better)

Mission

time

BFT (Byzantine fault tolerance) often

requires n  3f+1 (or  2f+1 with special

assumptions) to tolerate f faults.

For 3 days:

R4,1(0.1) ≈ 0.95

R1,0(0.1) ≈ 0.91
(Better)

For 30 days:

R4,1(1.0) ≈ 0.14

R1,0(1.0) ≈ 0.37(Better)

A possible model: nodes fail independently, with constant rate probability.

Example: ETTF

per node under

attack is 1 month

One metric of security: reliability

15

Graphic source: https://doi.org/10.1007/s13173-012-0062-x
ETTF of <1,0>

(ETTF = Expected time to failure)

n nodes; tolerating

up to f faulty nodes.

32

Probability that a security property (e.g., secrecy or integrity) never fails during a mission time

(Higher is better)

Mission

time

BFT (Byzantine fault tolerance) often

requires n  3f+1 (or  2f+1 with special

assumptions) to tolerate f faults.

For 3 days:

R4,1(0.1) ≈ 0.95

R1,0(0.1) ≈ 0.91
(Better)

For 30 days:

R4,1(1.0) ≈ 0.14

R1,0(1.0) ≈ 0.37(Better)

Reliability can be degraded when increasing the threshold (f), even if nodes fail independently.

A possible model: nodes fail independently, with constant rate probability.

Example: ETTF

per node under

attack is 1 month

One metric of security: reliability

15

Graphic source: https://doi.org/10.1007/s13173-012-0062-x
ETTF of <1,0>

(ETTF = Expected time to failure)

n nodes; tolerating

up to f faulty nodes.

33

Improve reliability with rejuvenations

16

34

Improve reliability with rejuvenations

16

Recover nodes: compromised state  healthy state

• Examples: replace device, patch vulnerability, update or reset a state, …

• Rejuvenations attenuate (but do not remove) the reliability degradation of long mission time

35

Improve reliability with rejuvenations

16

Rejuvenation modes:

• parallel vs. sequentially

• online vs. offline

Recover nodes: compromised state  healthy state

• Examples: replace device, patch vulnerability, update or reset a state, …

• Rejuvenations attenuate (but do not remove) the reliability degradation of long mission time

Graphic source: https://doi.org/10.1007/s13173-012-0062-x

36

Improve reliability with rejuvenations

16

Rejuvenation modes:

• parallel vs. sequentially

• online vs. offline

• reactively (if detected intrusion)

vs. proactively (for stealth

scenario; which frequency?)

Recover nodes: compromised state  healthy state

• Examples: replace device, patch vulnerability, update or reset a state, …

• Rejuvenations attenuate (but do not remove) the reliability degradation of long mission time

Graphic source: https://doi.org/10.1007/s13173-012-0062-x

37

Improve reliability with rejuvenations

16

Rejuvenation modes:

• parallel vs. sequentially

• online vs. offline

• reactively (if detected intrusion)

vs. proactively (for stealth

scenario; which frequency?)

Recover nodes: compromised state  healthy state

• Examples: replace device, patch vulnerability, update or reset a state, …

• Rejuvenations attenuate (but do not remove) the reliability degradation of long mission time

Graphic source: https://doi.org/10.1007/s13173-012-0062-x

Effects:

• may add cost, implementation complexity, new (?) vulnerabilities

• sequential rejuvenations may allow a mobile attacker to persist

• parallel offline rejuvenation may imply period of unavailable service

• increases availability (another metric: % secure time), even for  mission time

38

Another model

17

39

What if all nodes are compromised (e.g., leaky) from the start?

Another model

17

40

What if all nodes are compromised (e.g., leaky) from the start?

Another model

17

Threshold scheme may still be effective, if it increases the cost of exploitation!

(e.g., if exploiting a leakage vulnerability needs exponential

number of traces for high-order Differential Power Analysis)

41

Case scenario: encryption circuit with n-out-of-n threshold

implementation (design based on secret-sharing & SMPC).

Key remains secret while attacker does not find the bits in n wires.

(but attacker cannot directly probe the wires)

What if all nodes are compromised (e.g., leaky) from the start?

Another model

17

Threshold scheme may still be effective, if it increases the cost of exploitation!

(e.g., if exploiting a leakage vulnerability needs exponential

number of traces for high-order Differential Power Analysis)

Image source: openclipart.org/detail/172330

42

Case scenario: encryption circuit with n-out-of-n threshold

implementation (design based on secret-sharing & SMPC).

Key remains secret while attacker does not find the bits in n wires.

(but attacker cannot directly probe the wires)

What if all nodes are compromised (e.g., leaky) from the start?

Challenge questions:

• which models are realistic / match state-of-the-art attacks?

• what are concrete parameters (e.g., n) that make a real attack infeasible?

• what is the exploitation-complexity for other attacks? …

Another model

17

Threshold scheme may still be effective, if it increases the cost of exploitation!

(e.g., if exploiting a leakage vulnerability needs exponential

number of traces for high-order Differential Power Analysis)

Image source: openclipart.org/detail/172330

43

Outline

1. Introduction: we need reliable crypto

2. Validating a crypto module (the CMVP at NIST)

3. The threshold approach

4. Characterizing a threshold scheme

5. The threshold validation challenge

6. Concluding remarks

18

44

Characterizing features (1–2)

19

45

Characterizing features (1–2)

1. Kinds of threshold

• Need k-out-of-n good ones (or tolerate up to f-out-of-n bad ones) for

which values k and f ? for which security properties?

19

openclipart.org/detail/71491

46

Characterizing features (1–2)

1. Kinds of threshold

• Need k-out-of-n good ones (or tolerate up to f-out-of-n bad ones) for

which values k and f ? for which security properties?

• Levels of diversity (e.g., location, software, shares) vs. non-diversity

across the n components (common vulnerabilities?)

19

openclipart.org/detail/71491

47

Characterizing features (1–2)

1. Kinds of threshold

• Need k-out-of-n good ones (or tolerate up to f-out-of-n bad ones) for

which values k and f ? for which security properties?

• Levels of diversity (e.g., location, software, shares) vs. non-diversity

across the n components (common vulnerabilities?)

19

2. Communication interfaces

openclipart.org/detail/71491

openclipart.org/detail/190624

48

Characterizing features (1–2)

1. Kinds of threshold

• Need k-out-of-n good ones (or tolerate up to f-out-of-n bad ones) for

which values k and f ? for which security properties?

• Levels of diversity (e.g., location, software, shares) vs. non-diversity

across the n components (common vulnerabilities?)

19

2. Communication interfaces

• Client  crypto module: proxy? primary node? shares?

(is client aware of threshold scheme?)

openclipart.org/detail/71491

openclipart.org/detail/190624

49

Characterizing features (1–2)

1. Kinds of threshold

• Need k-out-of-n good ones (or tolerate up to f-out-of-n bad ones) for

which values k and f ? for which security properties?

• Levels of diversity (e.g., location, software, shares) vs. non-diversity

across the n components (common vulnerabilities?)

19

2. Communication interfaces

• Client  crypto module: proxy? primary node? shares?

(is client aware of threshold scheme?)

• Inter-node: structure (e.g., star vs. clique)? channel protection?

openclipart.org/detail/71491

openclipart.org/detail/190624

50

Characterizing features (3–4)

20

51

Characterizing features (3–4)

3. Executing platform

openclipart.org/detail/101407/

20

52

Characterizing features (3–4)

3. Executing platform

• Single (multi-chip) device vs. multi-party (e.g., multiple computers)

openclipart.org/detail/101407/

20

53

Characterizing features (3–4)

3. Executing platform

• Single (multi-chip) device vs. multi-party (e.g., multiple computers)

• Software vs. hardware

openclipart.org/detail/101407/

20

54

Characterizing features (3–4)

3. Executing platform

• Single (multi-chip) device vs. multi-party (e.g., multiple computers)

• Software vs. hardware

• Need additional machinery? (trusted global clock, proxy, RNG, combiner) openclipart.org/detail/101407/

20

55

Characterizing features (3–4)

3. Executing platform

• Single (multi-chip) device vs. multi-party (e.g., multiple computers)

• Software vs. hardware

• Need additional machinery? (trusted global clock, proxy, RNG, combiner)

4. Setup (bootstrap) and rejuvenation / recovery

openclipart.org/detail/101407/

20

56

Characterizing features (3–4)

3. Executing platform

• Single (multi-chip) device vs. multi-party (e.g., multiple computers)

• Software vs. hardware

• Need additional machinery? (trusted global clock, proxy, RNG, combiner)

4. Setup (bootstrap) and rejuvenation / recovery

• How to bootstrap: dealer vs. secure multi-party initialization of secret shares

openclipart.org/detail/101407/

20

57

Characterizing features (3–4)

3. Executing platform

• Single (multi-chip) device vs. multi-party (e.g., multiple computers)

• Software vs. hardware

• Need additional machinery? (trusted global clock, proxy, RNG, combiner)

4. Setup (bootstrap) and rejuvenation / recovery

• How to bootstrap: dealer vs. secure multi-party initialization of secret shares

• Rejuvenation modes? (reactive vs. proactive, parallel vs. sequential)

openclipart.org/detail/*

* in {161401, 161389}

openclipart.org/detail/101407/

20

58

Characterizing features (3–4)

3. Executing platform

• Single (multi-chip) device vs. multi-party (e.g., multiple computers)

• Software vs. hardware

• Need additional machinery? (trusted global clock, proxy, RNG, combiner)

4. Setup (bootstrap) and rejuvenation / recovery

• How to bootstrap: dealer vs. secure multi-party initialization of secret shares

• Rejuvenation modes? (reactive vs. proactive, parallel vs. sequential)

• Diversity: offline pre-computation vs. on-the-fly vs. limited set openclipart.org/detail/*

* in {161401, 161389}

openclipart.org/detail/101407/

20

59

Additional considerations

21

60

Additional considerations

21
openclipart.org/detail/291407

• Performance. How (in)efficient is the threshold vs. non-threshold version?

61

Additional considerations

21
openclipart.org/detail/291407 openclipart.org/detail/22712

• Performance. How (in)efficient is the threshold vs. non-threshold version?

• Operational pros & cons. Isolated patch may become trivial in multi-party setting; can

testing components become more difficult?

62

Additional considerations

21
openclipart.org/detail/291407 openclipart.org/detail/22712 openclipart.org/detail/263691, 281637

• Performance. How (in)efficient is the threshold vs. non-threshold version?

• Operational pros & cons. Isolated patch may become trivial in multi-party setting; can

testing components become more difficult?

• Application context. Should it affect security requirements? E.g., signature may ignore

concerns of integrity, if app layer verifies correctness. Encryption more difficult?

63

Additional considerations

21
openclipart.org/detail/291407 openclipart.org/detail/22712 openclipart.org/detail/263691, 281637 clker.com/clipart-10778.html

• Performance. How (in)efficient is the threshold vs. non-threshold version?

• Operational pros & cons. Isolated patch may become trivial in multi-party setting; can

testing components become more difficult?

• Application context. Should it affect security requirements? E.g., signature may ignore

concerns of integrity, if app layer verifies correctness. Encryption more difficult?

• Conceived attack types. - active vs. passive; - static vs. adaptive; - stealth vs. detected

- invasive (physical) vs. non-invasive; - side-channel vs. comm. interfaces; - parallel vs.

sequential (wrt attacking nodes); …

64

Additional considerations

21

A threshold scheme improving security against an attack in an application

may be powerless of degrade security for another attack in another application.

openclipart.org/detail/291407 openclipart.org/detail/22712 openclipart.org/detail/263691, 281637 clker.com/clipart-10778.html

• Performance. How (in)efficient is the threshold vs. non-threshold version?

• Operational pros & cons. Isolated patch may become trivial in multi-party setting; can

testing components become more difficult?

• Application context. Should it affect security requirements? E.g., signature may ignore

concerns of integrity, if app layer verifies correctness. Encryption more difficult?

• Conceived attack types. - active vs. passive; - static vs. adaptive; - stealth vs. detected

- invasive (physical) vs. non-invasive; - side-channel vs. comm. interfaces; - parallel vs.

sequential (wrt attacking nodes); …

65

Outline

1. Introduction: we need reliable crypto

2. Validating a crypto module (the CMVP at NIST)

3. The threshold approach

4. Characterizing a threshold scheme

5. The threshold validation challenge

6. Concluding remarks

22

66

A main question: flexibility?

23

67

A main question: flexibility?

23

What flexibility of features & parameters should a threshold-scheme standard allow?

clker.com/clipart-stretching-navy.html

68

A main question: flexibility?

23

What flexibility of features & parameters should a threshold-scheme standard allow?

What should then be delimited at validation phase

(e.g., validated only for n  2f+1; particular hardware; shares initialized with SMPC, …)

clker.com/clipart-stretching-navy.html

69

A main question: flexibility?

23

What flexibility of features & parameters should a threshold-scheme standard allow?

What should then be delimited at validation phase

(e.g., validated only for n  2f+1; particular hardware; shares initialized with SMPC, …)

What may remain flexible for deployment?

(e.g., f ; how to (re-)initialize shares: dealer vs. SMPC?, …)

clker.com/clipart-stretching-navy.html

70

A main question: flexibility?

23

What flexibility of features & parameters should a threshold-scheme standard allow?

What should then be delimited at validation phase

(e.g., validated only for n  2f+1; particular hardware; shares initialized with SMPC, …)

What may remain flexible for deployment?

(e.g., f ; how to (re-)initialize shares: dealer vs. SMPC?, …)

What can be directly validated vs. what must rely on vendor assertion / deployment?

- How to be sure that good randomness will be used?

- How to validate schedule of rejuvenations, ensure appropriate diversity? …

clker.com/clipart-stretching-navy.html

71

A main question: flexibility?

23

What flexibility of features & parameters should a threshold-scheme standard allow?

What should then be delimited at validation phase

(e.g., validated only for n  2f+1; particular hardware; shares initialized with SMPC, …)

What may remain flexible for deployment?

(e.g., f ; how to (re-)initialize shares: dealer vs. SMPC?, …)

Answers may to a certain extent depend on what can be assessed

by test & validation procedures (some of which to develop)!

What can be directly validated vs. what must rely on vendor assertion / deployment?

- How to be sure that good randomness will be used?

- How to validate schedule of rejuvenations, ensure appropriate diversity? …

clker.com/clipart-stretching-navy.html

72

Other questions about validation

24

73

Other questions about validation

24

Checklist: should the validation level (= a set of security assertions)

contain a checklist of attack scenarios and security properties?

• pairs <attack, security property> for which is the scheme is considered okay

• expected / adequate parameters for different conceived attacks

74

Other questions about validation

24

Checklist: should the validation level (= a set of security assertions)

contain a checklist of attack scenarios and security properties?

• pairs <attack, security property> for which is the scheme is considered okay

• expected / adequate parameters for different conceived attacks

Adaptation: How much should validation procedures / levels / assertions adapt to

threshold features and/or application context?

• Validation already currently have differences between platforms (software / hardware)

• Standards of crypto primitives are usually independent of platform, but there may be a foreseen deployment

(e.g., light-weight crypto)

75

Other questions about validation

24

Checklist: should the validation level (= a set of security assertions)

contain a checklist of attack scenarios and security properties?

• pairs <attack, security property> for which is the scheme is considered okay

• expected / adequate parameters for different conceived attacks

Adaptation: How much should validation procedures / levels / assertions adapt to

threshold features and/or application context?

• Validation already currently have differences between platforms (software / hardware)

• Standards of crypto primitives are usually independent of platform, but there may be a foreseen deployment

(e.g., light-weight crypto)

Base primitives: Should some base primitives be independently standardized / validated?

• Could some base primitives (e.g., secret sharing, oblivious transfer, commitments) be useful for the validation

of a complex threshold scheme with flexible parameters? (composability argument)

76

What test/validation procedures do develop?

25

77

What test/validation procedures do develop?

• That implementation is consistent with described features & parameters

25

clker.com/clipart-8522.html

78

What test/validation procedures do develop?

• That implementation is consistent with described features & parameters

• Develop test suites (including automated ones):

• Validate functional properties of expected threshold protocol

• Removing n-k components does not affect output (e.g., use input/output test vectors)

• Exercise erroneous behavior by up to f components

• Interfere with communication channels (inter-node and client to module)

• Exercise rejuvenation of components

• ...

25

clker.com/clipart-8522.html

79

What test/validation procedures do develop?

• That implementation is consistent with described features & parameters

• Develop test suites (including automated ones):

• Validate functional properties of expected threshold protocol

• Removing n-k components does not affect output (e.g., use input/output test vectors)

• Exercise erroneous behavior by up to f components

• Interfere with communication channels (inter-node and client to module)

• Exercise rejuvenation of components

• ...

• Other generic tests: code analysis, side-channel resistance, …

25

clker.com/clipart-8522.html

80

What test/validation procedures do develop?

• That implementation is consistent with described features & parameters

• Develop test suites (including automated ones):

• Validate functional properties of expected threshold protocol

• Removing n-k components does not affect output (e.g., use input/output test vectors)

• Exercise erroneous behavior by up to f components

• Interfere with communication channels (inter-node and client to module)

• Exercise rejuvenation of components

• ...

• Other generic tests: code analysis, side-channel resistance, …

(Can we try to predict likely types of bugs when implementing a threshold scheme?)

25

clker.com/clipart-8522.html

81

Outline

1. Introduction: we need reliable crypto

2. Validating a crypto module (the CMVP at NIST)

3. The threshold approach

4. Characterizing a threshold scheme

5. The threshold validation challenge

6. Concluding remarks

26

82

In summary

27

83

In summary

27

Is a threshold scheme more secure than a non-threshold one? It depends!

84

In summary

27

Is a threshold scheme more secure than a non-threshold one? It depends!

To assess security effects, we should characterize:

• Features of the threshold scheme

• Adversarial model: goals, capabilities, vectors

• Different effects (improve vs. degrade) on different security properties of interest

• New complexity from threshold approach (e.g., likely bugs, vulnerable extra components), …

85

In summary

27

Is a threshold scheme more secure than a non-threshold one? It depends!

To assess security effects, we should characterize:

• Features of the threshold scheme

• Adversarial model: goals, capabilities, vectors

• Different effects (improve vs. degrade) on different security properties of interest

• New complexity from threshold approach (e.g., likely bugs, vulnerable extra components), …

Standardizing a chosen scheme also entails:

• Deciding what remains flexible up to validation and/or deployment phases

• Develop test procedures and security assertions for validation

86

Next steps

28

87

Next steps

28

• We are working on a report about the subject

- It's about positioning a set of questions — what/how should we look at?

- To raise awareness, we published a short article “Psst, can you keep a secret?”,

to appear in IEEE Computer (Jan 2018)

clker.com/clipart-4281.html

88

Next steps

28

• We are working on a report about the subject

- It's about positioning a set of questions — what/how should we look at?

- To raise awareness, we published a short article “Psst, can you keep a secret?”,

to appear in IEEE Computer (Jan 2018)

• The report will be published for public comments

- We'll be looking for your feedback

clker.com/clipart-4281.html

89

Next steps

28

• We are working on a report about the subject

- It's about positioning a set of questions — what/how should we look at?

- To raise awareness, we published a short article “Psst, can you keep a secret?”,

to appear in IEEE Computer (Jan 2018)

• The report will be published for public comments

- We'll be looking for your feedback

• A constructive process may then consider concrete proposals

and a procedure for running the standardization effort

clker.com/clipart-4281.html

90

Next steps

28

• We are working on a report about the subject

- It's about positioning a set of questions — what/how should we look at?

- To raise awareness, we published a short article “Psst, can you keep a secret?”,

to appear in IEEE Computer (Jan 2018)

• The report will be published for public comments

- We'll be looking for your feedback

• A constructive process may then consider concrete proposals

and a procedure for running the standardization effort

• The end goal:

- standardize threshold schemes for cryptographic primitives

- develop guidelines for validation

- promote good practices of deployment

clker.com/clipart-4281.html

91

Thank you for your attention

“Sizing up the threshold”
Presented at the 2nd Theory of Implementation Security Workshop

January 09, 2018 (Zurich, Switzerland)

Disclaimer. External-source images were included in this presentation with the expectation of constituting fair use

and/or being allowed by license for such use. Opinions expressed in this presentation are from the authors and are

not to be construed as official or as views of the U.S. Department of Commerce. The identification of any

commercial product or trade names in this presentation does not imply endorsement of recommendation by NIST,

nor is it intended to imply that the material or equipment identified are necessarily the best available for the purpose.
29

92

	1 Sizing up the Threshold
	[1] Intro: we need reliable crypto
	2 The cybersecurity challenge today
	3 Observation
	4 Real-world examples of black-box failures
	5 Elephant

	[2] Validating a Crypto Module
	6 NIST crypto standards
	7 Current FIPS 140-2, CMVP
	8 What can go wrong
	9 Automate as much as possible
	10 Future CMVP
	11 Where are we today

	12 Outline 3 – The Threshold approach
	13 Threshold approach (high-level)
	14 Illustrative example
	15 One metric of security: reliability
	16 Improve reliability with rejuvenations
	17 Another model

	18 Outline 4 – Characterizing a threshold scheme
	19 Characterizing features (1–2)
	20 Characterizing features (3–4)
	21 Additional considerations

	22 Outline 5 – The threshold validation challenge
	23 A main question: flexibility?
	24 Other questions about validation
	25 What test/validation proceduresto develop?

	26 Outline 6 – Concluding remarks
	27 Summary
	28 Next steps
	29 Thank you

