ARX-based Cryptography

Nicky Mouha

ESAT/COSIC, K.U.Leuven, Belgium IBBT, Belgium

ECRYPT II Summer School, Albena Friday, June 3, 2011

Outline

- 1 Introduction
- 2 Addition and XOR
- 3 Multiplication, Counting
- 4 ARX
- 5 Conclusion

iplication, Counting ARX Conclusion ARX

Differential Cryptanalysis xdp⁺: Definition

xdp⁺: Motivating Example

ARX

• Addition (mod 2^n): +, \boxplus

• Rotation: $\ll r$

■ XOR: ⊕

Term 'AXR': Ralf-Philipp Weinmann (Dagstuhl 2009)

Later: renamed to ARX

Concept of ARX is much older

E.g. FEAL (Eurocrypt 1987)

lication, Counting ARX Conclusion ARX

Differential Cryptanalysis xdp^+ : Definition

xdp+: Motivating Example

Advantages of ARX

- Fast performance on PCs
- Compact implementation
- Easy algorithm
- No timing attacks
- Functionally complete (assuming constant included)

Conclusion

ARX

Differential Cryptanalysis xdp^+ : Definition xdp^+ : Motivating Example

Disadvantages of ARX

- Not best trade-off in hardware
- Security against linear and differential cryptanalysis?
- Security margin?
- Side-channel attacks?

Introduction
Addition and XOR

Multiplication, Counting ARX Conclusion ARX

Differential Cryptanalysis

xdp+: Definition

xdp+: Motivating Example

ARX Designs

- Block ciphers
 - FEAL, Threefish
- Stream ciphers
 - Salsa20, ChaCha, HC-128
- Hash functions:
 - SHA-3 Finalists: BLAKE, Skein
 - SHA-3 Second Round: Blue Midnight Wish, Cubehash
 - SHA-3 First Round: EDON-R

lication, Counting ARX Conclusion ARX

Differential Cryptanalysis

xdp+: Definition

xdp+: Motivating Example

Designs Similar to ARX

- Including left shift, right shift:
 - Block ciphers: TEA, XTEA, XXTEA
 - SHA-3 candidate: EnRUPT
- Including bitwise Boolean functions:
 - Hash functions: MD4, MD5, SHA-1
 - SHA-3 candidates: SIMD, Shabal

Conclusion

ARX

Differential Cryptanalysis xdp⁺: Definition xdp⁺: Motivating Example

This presentation

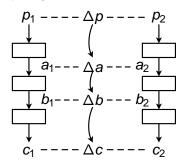
- Introduce S-function concept
 - Can handle left/right shifts, bitwise Boolean functions, multiplication by constants
- Focus on differential cryptanalysis
- Analyze addition, XOR, and ARX components
- Provide observations on larger components

Conclusion

ARX
Differential Cryptanalysis
xdp⁺: Definition
xdp⁺: Motivating Example

Differential Cryptanalysis

Differential characteristic: describes desired propagation of differences through cryptographic primitive



ARX
Differential Cryptanalysis
xdp⁺: Definition
xdp⁺: Motivating Example

S-box vs ARX

S-box

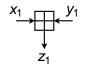
- Typical size up to 8 × 8 bit
- Difference distribution table: up to 2¹⁶ = 65536 elements
- Easy to calculate: differential probability, number of output differences, output difference with highest probability,...

ARX operations

- Typically, n = 32 or n = 64
- Difference distribution table: 2⁶⁴ or 2¹²⁸ elements, too large!
- Fast algorithms $(\mathcal{O}(n))$ required to calculate properties

ARX
Differential Cryptanalysis
xdp+: Definition
xdp+: Motivating Example

xdp⁺: The XOR Differential Probability of Addition



 Δx , Δy , Δz are fixed xor differences such that

$$x_2 = x_1 \oplus \Delta x$$
, $y_2 = y_1 \oplus \Delta y$, $z_2 = z_1 \oplus \Delta z$,

 xdp^+ expresses the fraction of pairs (x_1, y_1) for which the following holds:

$$((x_1 \oplus \Delta x) + (y_1 \oplus \Delta y)) \oplus (x_1 + y_1) = \Delta z.$$

ARX
Differential Cryptanalysis xdp^+ : Definition xdp^+ : Motivating Example

xdp+: Motivating Example

From "On the Additive Differential Probability of Exclusive-Or", Lipmaa, Wallén, Dumas, FSE 2004:

$$xdp^+(11100,00110 \rightarrow 10110)$$

= $LA_{101}A_{100}A_{111}A_{011}A_{000}C = \frac{1}{4}$

where

$$A_{000} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_{001} = A_{010} = A_{100} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix},$$

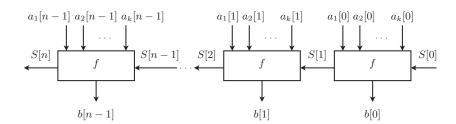
$$A_{011} = A_{101} = A_{110} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad A_{111} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

$$L = \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}^{T}.$$

S-function

An S-function accepts *n*-bit words a_1, a_2, \ldots, a_k and an *n*-digit input state S, and produces an *n*-bit output word b:

$$(b[i], S[i+1]) = f(a_1[i], a_2[i], \dots, a_k[i], S[i]), \quad 0 \le i < n.$$



S-functions xdp+ Linearization adp^{\oplus}

xdp⁺: From Words to Bits: Constructing f

$$\begin{array}{lll}
(x_2 & \leftarrow x_1 \oplus \Delta x \\
y_2 & \leftarrow y_1 \oplus \Delta y \\
z_1 & \leftarrow x_1 + y_1 & \Longrightarrow \\
z_2 & \leftarrow x_2 + y_2 \\
\Delta z & \leftarrow z_2 \oplus z_1
\end{array}$$

$$\begin{cases} x_2 &\leftarrow x_1 \oplus \Delta x \\ y_2 &\leftarrow y_1 \oplus \Delta y \\ z_1 &\leftarrow x_1 + y_1 \implies \\ z_2 &\leftarrow x_2 + y_2 \\ \Delta z &\leftarrow z_2 \oplus z_1 \end{cases} \begin{cases} x_2[i] &\leftarrow x_1[i] \oplus \Delta x[i] \\ y_2[i] &\leftarrow y_1[i] \oplus \Delta y[i] \\ z_1[i] &\leftarrow x_1[i] \oplus y_1[i] \oplus c_1[i] \\ c_1[i+1] &\leftarrow (x_1[i] + y_1[i] + c_1[i]) \gg 1 \\ z_2[i] &\leftarrow x_2[i] \oplus y_2[i] \oplus c_2[i] \\ c_2[i+1] &\leftarrow (x_2[i] + y_2[i] + c_2[i]) \gg 1 \\ \Delta z[i] &\leftarrow z_2[i] \oplus z_1[i] \end{cases}$$

S-functions xdp^+ Linearization adp^{\oplus}

xdp⁺: From Words to Bits: S-function

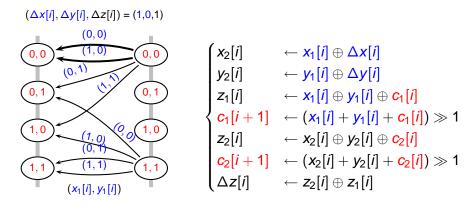
The S-function for xdp⁺ is:

$$(\Delta z[i], S[i+1]) = f(x_1[i], y_1[i], \Delta x[i], \Delta y[i], S[i]), \quad 0 \le i < n ,$$

$$S[i] \leftarrow (c_1[i], c_2[i]),$$

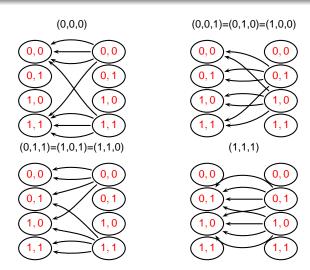
$$S[i+1] \leftarrow (c_1[i+1], c_2[i+1]).$$

xdp+: Subgraph



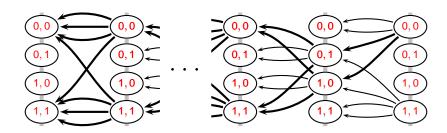
S-functions xdp^+ Linearization adp^{\oplus}

xdp⁺: All Subgraphs

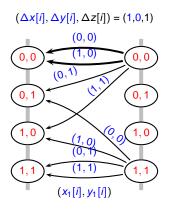


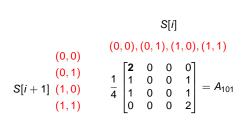
xdp⁺: From Graphs to Probability

Computing probability xdp^+ is equivalent to counting number of paths that satisfy Δx , Δy , Δz . Each valid pair (x_1, y_1) corresponds to path in graph (shown in bold).



xdp⁺: From Subgraph to Matrix





xdp+: All Matrices

There are four distinct matrices for xdp⁺:

$$A_{000}, A_{001} = A_{010} = A_{100}, A_{011} = A_{101} = A_{110}, A_{111}.$$

$$A_{000} = \frac{1}{4} \begin{bmatrix} 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}, A_{001} = \frac{1}{4} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix},$$

$$A_{011} = \frac{1}{4} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}, A_{111} = \frac{1}{4} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

xdp⁺: From Matrices to Probability

Computing the probability xdp^+ can be done using matrix multiplications

$$xdp^+(\Delta x,\Delta y\to\Delta z)=LA_{w[n-1]}\cdots A_{w[1]}A_{w[0]}C\ .$$

where

$$w[i] = \Delta x[i] \parallel \Delta y[i] \parallel \Delta z[i], \ 0 \le i < n,$$

 $L = [1 \ 1 \ \cdots \ 1],$
 $C = [1 \ 0 \ \cdots \ 0]^{T}.$

xdp+: Minimized Matrices

Reduce size of matrices by combining equivalent states (FSM reduction algorithm):

$$\begin{split} A'_{000} &= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ A'_{001} &= \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \\ A'_{011} &= \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \ A'_{111} &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}. \end{split}$$

Linearization

- How to find good differential characteristics for ARX?
- Very powerful technique: linearization!
- In case of ARX: replace addition by XOR, then find low-weight codewords
- Easy to prove: $xdp^+(\alpha, \beta \to \alpha \oplus \beta) > 0$

Conclusion

EDON- \mathcal{R}

- Hash function by Gligoroski et al., submission to SHA-3
- Here: analyis together with Bjørstad, unpublished

```
T_0
           (0x5555555
                                                                                   Y_7
T_1
                                                                                   Y_6
T_3^-
                                                                                                 11
                                                                                           >>>
                                                                                                 15
                                                                                          >>>
                                                                                          >>>
                                                                                                 20
                                                                                   Y_7
                                                                                                 25
                                                                                          >>>
                                                Y_3
                                                                                   Y_7
                                                                                                 27
```

Conclusion

S-functions xdp^+ **Linearization** adp^{\oplus}

EDON- \mathcal{R}

• Introduce XOR difference in bit *i* (*i* is not MSB)

For a pair (a_1, a_2) :

$$\Delta^{\pm} u[k] : \begin{cases} a_1[i] = 1, a_2[i] = 0, & \text{if } i = k, \\ a_1[i] = a_2[i], & \text{for } 0 \le i < n, i \ne k. \end{cases}$$

$$\Delta^{\pm} n[k] : \begin{cases} a_1[i] = 0, a_2[i] = 1, & \text{if } i = k, \\ a_1[i] = a_2[i], & \text{for } 0 \le i < n, i \ne k. \end{cases}$$

$$T_0 = (Y_1 + Y_7 + \dots) \gg 0$$

 $T_1 = (Y_1 + Y_4 + \dots) \gg 5$
 $T_3 = (Y_4 + Y_7 + \dots) \gg 11$

For a pair (a_1, a_2) :

$$\Delta^{\pm} u[k] : \begin{cases} a_1[i] = 1, a_2[i] = 0, & \text{if } i = k, \\ a_1[i] = a_2[i], & \text{for } 0 \le i < n, i \ne k. \end{cases}$$

$$\Delta^{\pm} n[k] : \begin{cases} a_1[i] = 0, a_2[i] = 1, & \text{if } i = k, \\ a_1[i] = a_2[i], & \text{for } 0 \le i < n, i \ne k. \end{cases}$$

$$\begin{array}{rclcrcr} 0 & = & (\mbox{u}[\mbox{k}] & + & Y_7 & + & \dots &) \gg & 0 \\ 0 & = & (\mbox{u}[\mbox{k}] & + & Y_4 & + & \dots &) \gg & 5 \\ 0 & = & (\mbox{Y_4} & + & \mbox{Y_7} & + & \dots &) \gg & 11 \end{array}$$

For a pair (a_1, a_2) :

$$\Delta^{\pm} u[k] : \begin{cases} a_1[i] = 1, a_2[i] = 0, & \text{if } i = k, \\ a_1[i] = a_2[i], & \text{for } 0 \le i < n, i \ne k. \end{cases}$$

$$\Delta^{\pm} n[k] : \begin{cases} a_1[i] = 0, a_2[i] = 1, & \text{if } i = k, \\ a_1[i] = a_2[i], & \text{for } 0 \le i < n, i \ne k. \end{cases}$$

$$\begin{array}{rclcrcr} 0 & = & (u[k] & + & n[k] & + & \dots &) \gg & 0 \\ 0 & = & (u[k] & + & Y_4 & + & \dots &) \gg & 5 \\ 0 & = & (Y_4 & + & n[k] & + & \dots &) \gg & 11 \end{array}$$

For a pair (a_1, a_2) :

$$\Delta^{\pm} u[k] : \begin{cases} a_1[i] = 1, a_2[i] = 0, & \text{if } i = k, \\ a_1[i] = a_2[i], & \text{for } 0 \le i < n, i \ne k. \end{cases}$$

$$\Delta^{\pm} n[k] : \begin{cases} a_1[i] = 0, a_2[i] = 1, & \text{if } i = k, \\ a_1[i] = a_2[i], & \text{for } 0 \le i < n, i \ne k. \end{cases}$$

$$0 = (u[k] + n[k] + \dots) \gg 0$$

$$0 = (u[k] + n[k] + \dots) \gg 5$$

$$0 \neq (n[k] + n[k] + \dots) \gg 11$$

Conclusion

S-functions xdp^+ Linearization adp^{\oplus}

Linearization

- "Finding SHA-1 Characteristics: General Results and Applications", De Cannière, Christian Rechberger, ASIACRPYT 2006
 - 64-step characteristic for SHA-1, no solution

adp[⊕]: The Additive Differential Probability of XOR

 Δx , Δy , Δz are fixed additive differences such that

$$x_2 = x_1 + \Delta x$$
, $y_2 = y_1 + \Delta y$, $z_2 = z_1 + \Delta z$,

 adp^{\oplus} expresses the fraction of pairs (x_1, y_1) for which the following holds:

$$(x_1 + \Delta x) \oplus ((y_1 + \Delta y) - (x_1 \oplus y_1)) = \Delta z.$$

S-functions xdp^+ Linearization adp^{\bigoplus}

adp[⊕]: Matrices and Probability

In a way similar to xdp^+ , we obtain 8 matrices for adp^{\oplus} .

The probability adp[⊕] is computed again as:

$$\mathrm{adp}^{\oplus}(\Delta x, \Delta y \to \Delta z) = LA_{w[n-1]} \cdots A_{w[1]}A_{w[0]}C$$
.

$xdp^{\times 3}$: Multiplication by 3

- Multiplication by constant: xdp^{×C}
 Hash functions Shabal (×3, ×5), EnRUPT (×9)
- Let $\alpha = 0$ x12492489 and $\gamma = 0$ x3AEBAEAB
- Approximation using xdp⁺:

$$xdp^+(\alpha, \alpha \ll 1 \rightarrow \gamma) = 2^{-25}$$

Correct probability:

$$xdp^{\times 3}(\alpha \rightarrow \gamma) = 2^{-15}$$

xdp ×3 xdc⁺ Example: Skein

xdp^{×3}: All Matrices

After minimization algorithm: 16×16 matrices reduced to 4×4 :

xdc⁺: # of Possible XOR Differentials of Addition

- xdc⁺ counts number of possible output differences, when input differences are given
- Start with minimized matrices for xdp⁺
- Apply subset construction (automata theory)

$$xdc^{+}(\Delta x, \Delta y) = LB_{w[n-1]} \cdots B_{w[1]}B_{w[0]}C ,$$

where

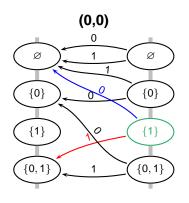
$$w[i] = \Delta x[i] \parallel \Delta y[i], \ 0 \le i < n ,$$

 $L = [1 \ 1 \ \cdots \ 1],$
 $C = [1 \ 0 \ \cdots \ 0]^T.$

 ${xdp}^{ imes 3}$ ${xdc}^+$ Example: Skein

xdc+: All Possible XOR Output Differences

Conclusion

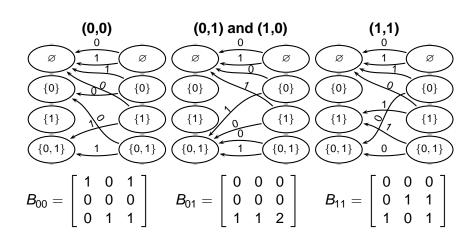


$$B_{00} = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right].$$

$$\begin{aligned} & A_{000}' \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \\ & A_{001}' \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{aligned}$$

 $xdp^{\times 3}$ xdc^+ Example: Skein

xdc⁺: Graphs



Conclusion

xdp×3 xdc⁺

Example: Skein

Cryptanalysis of Hash Function Skein

- Aumasson et al. (ASIACRYPT 2009)
 - $\mathcal{O}(2^n)$ time algorithm for xdc^+
- Mouha et al. (SAC 2010)
 - $\mathcal{O}(n)$ time algorithm for xdc^+

$$xdc^{+}(0x1000010402000000,0x0000000000000000)$$

$$= L \cdot B_{00}^3 \cdot B_{10} \cdot B_{00}^{19} \cdot B_{10} \cdot B_{00}^5 \cdot B_{10} \cdot B_{00}^8 \cdot B_{10} \cdot B_{00}^{25} \cdot C$$

= 5880

Introduction ARX S-functions adp^{ARX}

Toolkit Available

- No need to re-implement!
- Toolkit can perform all calculations in this presentation
- Can also efficiently find maximum probability output differences (paper currently being written)

http://www.ecrypt.eu.org/tools

Introduction ARX S-functions adp^{ARX}

Ongoing Work

- Analyzing ARX as a single component sufficient to analyze a cipher?
- Ongoing works shows not...
- Often many characteristics for same differential
- Then: Probability of differential ≠ Probability of characteristic

Introduction ARX S-functions adp^{ARX}

Conclusion

- ARX: Addition, Rotation, XOR
- Fast in software, increasingly used in designs
- But: security analysis seems difficult
- We need:
 - More analysis
 - Toolkits: avoid reinventing the wheel
 - Stategy for secure design