
Administrative Privileges in RBAC

M.A.C. Dekker1,2, J. Cederquist2, J. Crampton3, and S. Etalle2

1 Security group, TNO ICT, The Netherlands,
2 Distributed and Embedded Systems group, University of Twente,

3 Information Security Group, Royal Holloway, University of London

Abstract. In Role-Based Access Control (RBAC) privilege inheritance
allows users in high roles to automatically acquire the privileges of lower
roles, without going through the passes of explicitly activating those
lower roles. In existing literature privilege inheritance does not make a
distinction between the administrative privileges and the ordinary user
privileges. We believe that this is inadequate and too restrictive. We
present an extension of the standard privilege inheritance relation, which
is more flexible, allowing sub-administrators to use weaker administrative
privileges as well, in addition to the ones they are explicitly assigned to.
We show that the extended inheritance relation is decidable, and we
sketch how it can be used in practice.

1 Introduction

Role-based access control (RBAC) [11] is widely used to simplify the
assignment of access rights to users. In RBAC, users are assigned to roles
and to the roles access rights are assigned. The idea is that in practice,
for example in a company, the number of distinct roles is much smaller
than the number of access rights being modeled. By adding and removing
users from roles, groups of access rights can be managed. Roles can be
ordered in an hierarchy to copy parts of the organizational hierarchy.
In practice, however, an RBAC system may still involve thousands of
roles [5], ordered in a large hierarchy. For an administrator it may be
difficult to make changes to these roles, the role-hierarchy, or the access
rights. It is important that bottlenecks are removed to avoid that users are
tempted to share keys or passwords that should remain secret. The usual
approach to this problem is to decentralize the administrative authority,
in other words, to delegate to other users, the power to make certain
administrative changes, on behalf of the administrator.

Several lines of research address the problem of administration of
RBAC systems. Ferraiolo et al. [5] compare some of the different ap-
proaches. The main issue in this line of research is how to model admin-
istrative privileges, as opposed to the ordinary user privileges, and who

2 Dekker, Cederquist, Crampton and Etalle

should have them. In ARBAC [10] an administrative privilege is defined
as a relation on a subset of roles, and they are assigned only to a separate
hierarchy of roles. Crampton et al. [4] take a more general approach, by
using a single role hierarchy for both the administrative privileges and the
ordinary user privileges. They define, using the concept of administrative
scope, which roles should have administrative privileges over other roles.
In the Role-Control Center (RCC) [5], administrative privileges over roles
are defined in terms of views, which are subsets of the role-hierarchy. They
give the administrative power over a role only to members of that role.

In existing RBAC literature [2–5, 10, 13–15], administrative privileges
are inherited just like ordinary user privileges. We believe that this is
inadequate. For administrative privileges, the standard privilege inheri-
tance is more restrictive then necessary for safety. In this paper we extend
the standard privilege inheritance relation to allow a more flexible use of
administrative privileges. We prove that the extended relation is decid-
able and we show how it can be used in practice. We believe that this
extension decentralized management of the RBAC system becomes more
easy in practice.

The rest of this paper is organized as follows. In Section 2, we give
some basic definitions that follow directly from standard RBAC. In Sec-
tion 3 we show why the standard privilege inheritance relation for RBAC
does not carry over, in the right way, to administrative privileges. We
extend the privilege inheritance relation and we prove that the extended
inheritance relation is decidable. Finally, sections 4 and 5 contain an
overview of related work and our conclusions.

2 Preliminaries

In this section we give some definitions about the standard RBAC model [11].

Definition 1 (RBAC State). Given the sets U of users, R of roles and
P of privileges, we define an RBAC state as a tuple,

〈UA,RH ,PA〉,

where,

UA ⊆ U ×R

RH ⊆ R×R (a directed graph on R)
PA ⊆ R× P.

Administrative Privileges in RBAC 3

Here UA determines which users are assigned to which roles in R. The
graph RH is the so-called role-hierarchy and PA determines which privi-
leges are assigned to which roles. A user can play the roles to which it is
assigned, and the roles that are below them in the hierarchy. Sometimes
(r, r′) ∈ RH is written as r > r′. Below we denote the reflexive transitive
closure over the graph RH with > (also known as the partial order on
RH).

In the RBAC model [11], a user does not get all the privileges asso-
ciated to the roles it can play: The user has to start a session, in which
one or more of the user’s roles can be activated. The session gets only all
the privileges of the activated roles. Basically, this allows users to operate
from sessions with less privileges than they are entitled to, implement-
ing the so-called principle of least privilege. In this paper, for the sake of
brevity, we will not be explicit about sessions nor the activations of roles.

We define the administrative operations that make changes to the
RBAC state. To keep our approach as general as possible we define a
triple of atomic operations, for changes to UA, RH and PA.

Definition 2 (Administrative Operations). The transitions T (U,R, P)
between RBAC states are

[add u, r] adding (u, r) to UA,
[add r, r′] adding (r, r′) to RH ,
[add r, p] adding (r, p) to PA.

For the sake of simplicity, we omit the operations to add names to U , R,
or P . They are rather trivial to define and do not serve the exposition in
this paper. We do not care about the elements in U , R or P , unless they
are somehow connected by an edge. We assume that the sets of users,
roles and privileges are fixed and sufficiently large. Furthermore, we omit
the operations to remove elements from UA, RH or PA, because this is
an orthogonal issue which can be dealt with separately.

Remark 1 (About cycles in the role-graph). In some of the existing liter-
ature on RBAC, it is required that RH be acyclic, to avoid redundancy.
For example, if both (a, b) ∈ RH and (b, a) ∈ RH , then using the two
different names a and b is redundant. Similarly, sometimes RH is re-
quired to be transitively reduced ; for example, the transitive reduction of
{(a, b), (b, c), (a, c)} removes the last element, because there would be a
path anyway from a to c using the other edges.

For the sake of brevity, we ignore such constraints. Actually, we do
not assume any set of constraints on RH or PA throughout this paper.

4 Dekker, Cederquist, Crampton and Etalle

The results in this paper apply equally to acyclic and cyclic directed
graphs. Moreover, the extension of the privilege inheritance relation, to
be introduced in the next section, does not introduce extra cycles (in
some cases it removes cycles).

Given an RBAC state, we say that a role r has a privilege p, if (r, p) ∈
PA. Additionally, it is common (see below) that privileges of lower roles
are available as well, i.e. without the need to activate the lower roles
first. This is known as privilege inheritance. See for example the RBAC
state shown in Figure 1a. The role r1 inherits the privilege p assigned to
role r2. With privilege inheritance the edge from r1 to p in Figure 1b is
redundant.

Definition 3 (Privilege Inheritance). Given an RBAC state 〈UA,RH ,PA〉,
a role r has the privilege p, denoted r Ã p, only if

r > r′ and (r′, p) ∈ PA for some r′ ∈ R.

When a user activates a role in a session, this session acquires all the
privileges of the role.

Fig. 1. Two sample RBAC states. With privilege inheritance the extra edge on the
right is redundant.

The advantage of privilege inheritance in RBAC is that it allows users
in a high role, to also use privileges of a lower role, without activating
that lower role. This is a well-known feature of RBAC, which can be used
to avoid repetitive definitions in the RBAC state (like the edge between
r1 and p).

3 A Different View on Administrative Privileges

Privileges can be divided into user privileges and administrative priv-
ileges [11]. While the user privileges allow actions on objects (such as
printing files or viewing records), administrative privileges, allow actions

Administrative Privileges in RBAC 5

on the RBAC state itself. In this paper we focus on the latter. We assume
that the user privileges are a finite set of atomic privileges, denoted Q,
corresponding to a finite set of actions on objects. On the other hand,
the set of administrative privileges is necessarily infinite: Consider the
privilege to assign role r, the privilege to assign role r′, the privilege and
so on. We formalize the full set of privileges by defining a grammar that
encompasses both the user privileges and the administrative privileges.

Definition 4 (Privilege Grammar). Given the sets U of users, R of
roles and Q of user privileges, the set of all privileges P is defined by the
following grammar:

p ::= q |addUser(u, r) | addEdge(r, r′) | addPrivilege(r, p),

where u ∈ U , q ∈ Q and r, r′ ∈ R.

Each administrative privilege corresponds to an administrative operation
(cf. Definition 2); we say that, for example, the privilege addEdge(r1, r2)
guards the operation [add r1, r2].

Note that the construction addPrivilege(r, p) is a grammatical con-
nective and that, as a consequence, the set P is infinite, although the set
of user privileges Q and the set of roles R are finite. Previous literature
sometimes restricts the number of possible administrative levels (in other
words, the number of nestings of the addPrivilege connective). For exam-
ple, Sandhu et al. [11] argue that only one level is sufficient, Zhang et
al. [15] describe privileges with two levels. We agree that privileges with
many levels of administration will not be useful in some settings. But we
take a general approach here, and we leave it to administrators to choose
which administrative privileges may be useful.

In most existing literature on the administration of RBAC systems
some constraints are assumed that restrict which roles should have ad-
ministrative privileges over others. For example, in the original RBAC
model, administrative privileges can only be assigned to a separate set of
administrative roles. In the RCC model [5] a role can only assign a privi-
lege if the role itself has that privilege. In the RHA model [4] a role only
has the privilege to administer other roles that are in its administrative
scope. We do not exclude any of these choices and we assume that, in
principle, any role can be assigned any administrative privilege. In the
sequel, we focus on the inheritance of administrative privileges.

3.1 Extended Privilege Inheritance

Let us first sketch why we argue that the usual privilege inheritance (re-
ported in the preliminaries) is inadequate for the administrative privi-

6 Dekker, Cederquist, Crampton and Etalle

leges. Take for example a role r with the privilege to add an edge e from
r2 to r3. The role r does not have the privileges to add an edge from r2 to
any role below r3, nor the privileges to add an edge from any role above
r2 to r3. However, from a security point of view this makes no sense, be-
cause with edge e in place there would be anyway a path to roles below
r3, or a path from roles above r2. The usual RBAC privilege inheritance
however does not make this distinction, basically treating administrative
privileges like ordinary atomic user privileges. One can distinguish six

Fig. 2. The right to add the dashed edge, is stronger than the right to add the dotted
edge.

different cases, depicted in Figure 2.
In Figure 2a, the (administrative) privilege to assign user u to role

r1 (the dashed edge) is stronger than the privilege to assign user u to
role r2. In Figure 2b, the privilege to add an edge between r1 and r2 (the
dashed arrow) is stronger than the privilege to add only user u to role
r2. In Figure 2c, the privilege to add an edge from r1 to r2 (the dashed
arrow) is stronger than the privilege to add an edge from r1 to r3 (the
dotted arrow). In Figure 2d, the privilege to add an edge from r2 to r3

is stronger than the privilege to add an edge from r1 to r3. In Figure 2e,
the privilege to add an edge from r1 to r2 is stronger than the privilege to
assign the privilege p to r1. Finally, in Figure 2f, the privilege to assign a
privilege p to r2 is stronger than the privilege to assign p to r1.

We now define the privilege ordering formally:

Definition 5 (Privilege Ordering). Given an RBAC state 〈UA,RH ,PA〉,
let p, p1, p2 be privileges in P , let Q be the subset of user privileges in P ,

Administrative Privileges in RBAC 7

and let r1, r2, r3, r4 roles in R. The relation → is defined as the smallest
relation satisfying:

1. p → p, if p ∈ Q
2. addUser(u, r1) → addUser(u, r2), if r1 > r2

3. addEdge(r1, r2) → addUser(u, r3), if r2 > r3 and (u, r1) ∈ UA
4. addEdge(r2, r3) → addEdge(r1, r4), if r1 > r2 and r3 > r4

5. addEdge(r2, r3) → addPrivilege(r1, p2), if r1 > r2, r3 > r4, (r4, p1) ∈
PA and p1 → p2

6. addPrivilege(r2, p1) → addPrivilege(r1, p2), if r1 > r2 and p1 → p2

The ordering of privileges, which is reflexive and transitive, yields an
extended privilege inheritance relation.

Definition 6 (Extended Privilege Inheritance). Given an RBAC
state, 〈UA,RH ,PA〉, let r ∈ R and p ∈ P , and let Ã denote the stan-
dard privilege inheritance, reported in Definition 3. The extended privilege
inheritance r Ã∗ p holds only if

r Ã p′ and p′ → p, for some p′ ∈ P .

The extended privilege inheritance relation is useful because it allows
users, with administrative privileges, to be implicitly authorized for weaker
administrative privileges. Thereby, it gives administrative users the possi-
bility to perform a safer administrative operation, than the one originally
allowed. Recall that the standard privilege inheritance of RBAC is sim-
ilarly motivated. We now give a simple practical example of how this
extension can be used.

Fig. 3. A practical example of the use of the extended inheritance relation.

8 Dekker, Cederquist, Crampton and Etalle

Example 1 (Visiting Researcher). Consider figure 3. Charles, the security
administrator, gives the staff the privilege to add visiting researchers to
the staff role. There is also a role below staff called wifi, with the privilege
to use the wireless network. Alice is a visiting researcher and Bob is a
member of the staff. Alice only needs access to the wifi network, so Bob
would like Alice to use the wifi role. Charles (who just left for holidays)
did not provide this privilege explicitly to the staff.

In the standard RBAC model, Bob can only assign Alice to the staff
role. Given the fact that Alice only needs wifi access, Bob urges Alice to
apply the principle of least privilege, and to activate only the wifi role.
However, Bob can only hope that Alice does so.

With the extended privilege inheritance relation Bob can assign Alice
to the wifi role because of his privilege to add users to the staff role. In
a way, instead of preaching the principle of least privilege to Alice, Bob
applies it for her.

3.2 Tractability

Now we address a practical issue. We prove that the extended privilege
inheritance relation (Definition 6) is tractable. Since the full set P of
privileges is infinite, this result is not immediate. For instance, a naive
forward search does not necessarily terminate (see below). The proof also
indicates how a decision algorithm, deciding which privileges are to be
given to which roles, can be implemented at an RBAC security monitor.

First notice that since RH and PA are finite sets, the standard privi-
lege inheritance Ã is decidable. To show how to decide whether r Ã∗ p,
we first prove that there is an algorithm that can decide, whether p → q,
for any p, q in P .

Lemma 1 (Decidability of the Ordering Relation). Given an
RBAC state S, and two privileges p, q, it is decidable whether p → q.

Proof. The proof is by structural induction over q.
The base cases are when q is not of the form addPrivilege(., .). We

show that for the three base cases p → q is decidable:

– Either q is a user privilege from Q. In this case p → q holds only when
p = q (see rule (1) in Definition 6).

– Or q is of the form addUser(., .) in which case only rule (2) needs to
be checked, which has finite premises.

– Or q is of the form addEdge(., .), in which case the rules (2) and (3)
of Definition 5 need to be checked. Both have finite premises.

Administrative Privileges in RBAC 9

For the induction step, suppose that q is addPrivilege(r′, q′), for some
role r′ and privilege q′. Now, p → q can only hold if either p is of the
form addEdge(., .) and the premises of rule (5) holds, or p is of the form
addPrivilege(., .) and the premises of rule (6) holds. In both cases, the
premises are decidable, either because they are finite, or because the in-
duction hypothesis is applicable (in p′ → q′, q′ is structurally smaller than
q, regardless of p′).

Theorem 1 (Decidability of Extended Privilege Inheritance).
Given an RBAC state, a role r and a privilege p in P , there is an algo-
rithm to determine whether r Ã∗ p.

Proof. The standard privilege inheritance Ã is decidable, yielding a finite
set of privileges p′ inherited by r. Now for each privilege p′ we need to
check whether p′ → p. This was shown to be decidable in the previous
lemma.

We now give an example of how the above described procedure can
be used in practice.

Example 2. Consider Example 1 again.
Can Bob assign Alice to the wifi role? We have to check that the role staff
inherits the privilege addUser(alice,wifi). Using the first part of Defini-
tion 6, one finds that the staff role has the privilege addUser(alice, staff).
Now we should decide whether

addUser(alice, staff) → addUser(alice,wifi).

This follows trivially from the first rule of Definition 5.
To give a more involved example, suppose that the system adminis-

trator Charles has the privilege addPrivilege(staff , addUser(alice, staff)).
Can Charles also give the staff role the privilege addUser(alice,wifi)? We
have to check whether

addPrivilege(staff , addUser(alice, staff)) →
addPrivilege(staff , addUser(alice,wifi)).

This is indeed the case by using rule (6) first, and then rule (2).
Now, for the sake of exposition, let us remove the edge between the

staff and the wifi role. Let us show how to determine that the previous
relation does not hold: Only rule (6) applies, in which case we must decide
whether addUser(alice, staff) → addUser(alice,wifi). This is a base case
of the induction described in the proof of Lemma 1: Only rule (2) remains
to be checked and than we can conclude that it does not hold.

10 Dekker, Cederquist, Crampton and Etalle

It could be useful to find all the privileges p′ weaker than a given p.
However, in some cases the set of all privileges p′ weaker than a given
privilege p, is infinite. For the interested reader, we give an example of
this in the appendix.

4 Related Work

The problem of administration of an RBAC system was first addressed by
Sandhu et al. [11]. Later, numerous articles have been published extending
or improving the administration model proposed there [2–5, 10, 13–15].
We discuss some of them.

Barka et al. [2] distinguish between original and delegated user role
assignments. Delegations are modeled using special sets, and different sets
are used for single step and double step delegations (which must remain
disjoint). A function is used to verify if membership to a role can be del-
egated. Privileges can also be delegated, provided they are in the special
set of delegatable privileges belonging to the role. In their work, each
level of delegation requires the definition of tens of sets and functions,
whereas in our model administrative privileges, of an arbitrary complex-
ity, are simply assigned to roles, just like the ordinary privileges. The
PDBM model [15] defines a cascaded delegation. This form of delegation
is also expressible in our grammar. In the PDBM model, however, each
delegation requires the addition of a separate role, whereas, in our model
the privileges for delegations are assigned to roles just as the ordinary
privileges. It is not required to add any additional roles.

A number of proposals define general constraints on the administra-
tive privileges. For example, the constraint that a user must first have a
privilege, before being allowed to delegate it to other users. Note that, as
mentioned earlier, in this paper no particular choice is made with respect
to such constraints. Zhang et al. [14] implement rule based constraints
on delegations. They demonstrate their model using a Prolog program.
Basically, they analyze the properties of a centralized RBAC system, fo-
cussing on so-called separation of duty policies. Crampton [4] defines the
concept of administrative scope. Basically a role r is in the scope of a
role r′ if there is no role above r′ that is not below r. They show how
administrative scope can be used to constrain delegations to evolve in a
natural progression in the role hierarchy. Bandman et al. [1] use a general
constraint language to specify constraints on who can receive certain dele-
gations. A more complex issue (another type of constraint) is the transfer
of delegations [3]. Here the delegator looses the right it is delegating. Such

Administrative Privileges in RBAC 11

delegations may be useful in practice, and we are interested to see how
they can be implemented in our model.

Role-based trust management systems [6–8, 12] and distributed cer-
tificate systems, such as SDSI [9], are related lines of research. In these
systems, a number of agents exchange security statements. Specifically,
agents may make hierarchies similar to those in RBAC, simply by utter-
ing certain security statements. In such models it is often assumed that
users are free to utter security statements, while the focus is on wether
to trust such statements (typically by some trust calculation by the re-
ceiver). In the RBAC setting however this assumption is very inappropri-
ate. Statements changing the RBAC hierarchy should not be uttered by
users, unless they have the explicit privilege to do so. Despite this differ-
ence, our result does apply also to role-based trust management models.
The extended privilege inheritance relation would then correspond to the
notion of refinement of policies or trust statements.

5 Conclusion

We have presented an extended privilege inheritance relation for RBAC
systems. We have shown why the extended privilege inheritance relation
is more flexible for users, but not less safe. We have shown how that the
extended inheritance relation is decidable, and we sketched how it can be
implemented in practice.

Flexibility of management is an important requisite when deploying
access control systems in practice. For example, discretionary access con-
trol systems are widely used because they are so flexible. RBAC on the
other hand is less flexible, but it can be used to implement also manda-
tory security policy (for instance like in the Bell LaPadula model). To
allow for a more flexible management, we extend the standard RBAC
privilege inheritance. Basically, users with administrative privileges can
also use lesser administrative privileges. Our extension can be seen as an
application of the principle of least privilege to administration.

Of course, the definitions of the RBAC state can be chosen such that
the extended and the standard inheritance relation yield the same result.
In most cases however this is cumbersome. For example, the dotted edge
in Figure 3 could also be explicitly added as an administrative privilege
for the staff role. However, when the edge between the staff role and
the wifi role is removed, then this makes no sense anymore. This kind of
dependencies may complicate changing the role-hierarchy. Such repetitive
definitions are not needed, when using the extended privilege inheritance.

12 Dekker, Cederquist, Crampton and Etalle

A number of improvements and additions can be made. For example
we do not consider quantification over roles or privileges in the grammar.
For example we can not express the privilege ∀r.addEdge(r, r′). This priv-
ileges may be very useful in practice. Another point of interest is the fact
that the extended privilege inheritance relation requires more informa-
tion about the RBAC state. In a practical implementation (for example
in a distributed setting) this has to be taken into account. In particular
it would mean that the supporting chain mechanism, for the verification
and revocation of delegations, proposed by Wainer and Kumar [13], needs
to be extended. Finally, as we do not make a particular choice regard-
ing constraints on the administrative privileges, it seems interesting to
investigate how this result can be combined with, for example, the RHA
family of administrative RBAC models.

Acknowledgements

Marnix Dekker was funded by TNO and SenterNovem through the IOP
Gencom project PAW. Jan Cederquist was funded by the Account project.

References

1. O. L. Bandmann, B. Sadighi Firozabadi, and M. Dam. Constrained delegation. In
M. Abadi and S. M. Bellovin, editors, Proc. of the Symp. on Security and Privacy
(S&P), pages 131–140. IEEE Computer Society Press, 2002.

2. E. Barka and R. S. Sandhu. Framework for role-based delegation models. In
J. Epstein, L. Notargiacomo, and R. Anderson, editors, Annual Computer Security
Applications Conference (ACSAC).

3. J. Crampton and H. Khambhammettu. Delegation in role-based access control. In
D. Gollmann and A. Sabelfeld, editors, Proc. of the European Symp. on Research
in Computer Security (ESORICS), LNCS, pages 174–191. Springer, Berlin, 2006.

4. J. Crampton and G. Loizou. Administrative scope: A foundation for role-based
administrative models. Transactions on Information System Security (TISSEC),
6(2):201–231, 2003.

5. D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-based Access Control.
Computer Security Series. Artech House, 2003.

6. T. Jim. SD3: A trust management system with certified evaluation. In R. Needham
and M. Abadi, editors, Proc. of the Symp. on Security and Privacy (S&P), pages
106–115. IEEE Computer Society Press, 2001.

7. N. Li, J. Mitchell, and W. Winsborough. Design of a role-based trust-management
framework. In M. Abadi and S. M. Bellovin, editors, Proc. of the Symp. on Security
and Privacy (S&P), pages 114–130. IEEE Computer Society Press, 2002.

8. N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discov-
ery in trust management: extended abstract. In P. Samarati, editor, Proc. of the
Conf. on Computer and Communications Security (CCS), pages 156–165. ACM
Press, 2001.

Administrative Privileges in RBAC 13

9. R. L. Rivest and B. Lampson. SDSI – A simple distributed security infrastructure.
Presented at CRYPTO’96 Rump session, 1996.

10. R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-
based administration of roles. Transactions on Information and System Security
(TISSEC), 2(1):105–135, 1999.

11. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.

12. R. Tamassia, D. Yao, and W. H. Winsborough. Role-based cascaded delegation.
In T. Jaeger and E. Ferrari, editors, Proc. of the Symp. on Access Control Models
and Technologies (SACMAT), pages 146–155. ACM Press, 2004.

13. J. Wainer and A. Kumar. A fine-grained, controllable, user-to-user delegation
method in RBAC. In E. Ferrari and G. Ahn, editors, Proc. of the Symp. on Access
Control Models and Technologies (SACMAT), pages 59–66. ACM Press, 2005.

14. L. Zhang, G. Ahn, and B. Chu. A rule-based framework for role-based delegation
and revocation. Transactions on Information and System Security (TISSEC),
6(3):404–441, 2003.

15. X. Zhang, S. Oh, and R. S. Sandhu. PBDM: a flexible delegation model in RBAC.
In D. Ferraiolo, editor, ACM Symposium on Access Control Models and Technolo-
gies (SACMAT), pages 149–157. ACM Press, 2003.

A Infinitely many weaker privileges

Consider a state where (r2, addEdge(r1, r2)) ∈ PA. Suppose now we are
interested in finding all the privileges weaker than addEdge(r1, r2). The
first weaker privilege we discover by applying rule (5) in definition 5:

addPrivilege(r1, addEdge(r1, r2)).

Using this result in rule (6), we find another weaker privilege,

addPrivilege(r1, addPrivilege(r1, addEdge(r1, r2))),

and we can use this again in rule (6), and so on.
Note that the outer nesting in the last term is in a sense redundant.

Instead of assigning the privilege addEdge(r1, r2) to r1, one assigns the
privilege to do so, to r1. This only requires the users in role r1 to perform
another administrative step: The extra nesting is useless. In general, it
seems that we can stop after n applications of rule (6), where n is the
length of the longest path in RH , but we do not make this observation
more formal here.

