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Abstract

SESAME is a security architecture that starts from the
Kerberos protocol and adds to it public-key based authen-
tication, role based access control, delegation of rights and
an extensive auditing facility. SESAME provides the GSS-
API for securing applications and this paper describes our
efforts in securing some of the most important Unix appli-
cations using SESAME: telnet, the BSD rtools and the re-
mote procedure call. We have found the benefit of using
SESAME is that the applications are secured in a uniform
manner, additional security services are provided to the ap-
plications that are unavailable with other architectures, and
the impact of SESAME on the application’s performance is
not excessive.

Keywords: network security, access control, Kerberos,
SESAME, GSS-API.

1. Introduction

The need for security in networked applications has re-
sulted in a variety of solutions. Telnet [4] a common ap-
plication that allows a remote login across a network, tradi-
tionally had only username and password for authentication
(that are passed in the clear over the network) and no data
protection. Telnet has previously been secured with the Se-
cure Sockets Layer (SSL) [6] and Kerberos [9], to improve
this situation.

The common BSD rtools [8] traditionally had host-based
authentication only, and the security was considered so
weak that the rtools were banned from most installations.
To improve the situation the rtools have been secured with
Kerberos, SSL, and a replacement version called Secure
Shell Protocol (SSH) [16] is available.

The remote procedure call, and in particular the version
called Open Network Computing (ONC) [12] that is avail-
able on a number of platforms, traditionally only provided

authentication services. Attempts have been made to add
data protection services to ONC RPC [7, 5] and the version
of RPC from OSF’s DCE also provides an access control
service.

The same situation occurs for a number of other com-
mon networked applications: they lack security and a vari-
ety of techniques have been used to secure the applications.
We have chosen to secure the three applications described
above with SESAME. There are a number of reasons to use
SESAME:

SESAME provides an excellent range of security ser-
vices, more than any other architecture used to date
for securing the applications, and we were interested
in how we might use these additional security services.

To investigate using the SESAME GSS-API [3] to se-
cure different applications: whether or not it is useful
using a uniform method, and what is the impact on per-
formance.

To encourage the use of SESAME by freely providing
the source code for the sesamized applications to the
general public.

The paper is organized as follows. Section 2 and 3 intro-
duce the SESAME architecture and the GSS-API. Section
4 describes our efforts in securing the applications and dif-
ficulties encountered. Section 5 describes the performance
of each of the applications. We finish with our conclusions.

2. SESAME

The SESAME architecture is the result of an EC re-
search project that was instigated by Bull, ICL and Siemens.
This means that the main European computer manufacturers
were a driving force behind the project. When the project
finished in 1995, the work was continued at ESAT/COSIC
and QUT.



The concrete objectives of the SESAME project were to
define and implement protocols both for authentication and
for the management of access control in a client-server sce-
nario. SESAME provides the following advantages:

Single or mutual authentication using either Kerberos
or public-key based authentication [15]
Confidentiality and Integrity of the data during transit
Access control based on an Role Based Access Control
(RBAC) scheme [14]
Delegation of rights
Auditing service
Multi-domain support [2]

In 1995, a first public release of the SESAME code (ver-
sion 4.0) was issued at [13]. Unfortunately the regulations
in Europe did not allow for a distribution of SESAME con-
taining symmetric key cryptography. Therefore, according
to the guidelines of the SOG-IS (Senior Officials Group on
Information Security), the DES was removed and replaced
by a straightforward XOR. It is thus essential for the users
of SESAME to plug in their own version of the DES. To
make it easy for non-programmers, the version for Linux
[1] that resides in Australia, now contains an excellent im-
plementation of the DES [17].

3. GSS-API

The goal of the Generic Security Services Application
Program Interface (GSS-API) [11] is to provide the appli-
cation programmer with a uniform library of functions that
implement security in a client-server scenario. The big ad-
vantage to the programmer is that he does not need to know
or understand the details of how every security function
(e.g. user authentication or data integrity) is actually imple-
mented. The programmer only needs a basic understanding
of security in order to make the appropriate calls in his pro-
grams. The GSS-API is a standard, so it should not make a
difference who has made the GSS-API implementation.

Several network security architectures provide an imple-
mentation of the GSS-API. However they do not all offer
the same functionality. The Kerberos GSS-API [10] for ex-
ample gives the application programmer a set of security
services based on the underlying Kerberos architecture. In
comparison to the SESAME GSS-API, it is limited because
it only offers mutual authentication, data confidentiality and
data integrity. The SESAME GSS-API [3] provides the ex-
tra services outlined in Section 2. It also offers these ser-
vices across a large multi-domain platform.

Basically, a SESAME GSS-API secured client-server
application works in the following way. Both the client
and server will acquire their credentials, performing an au-
thentication (gss acquire credential) to the security

server. The client will then present its context (contain-
ing the keying information and privilege attribute certifi-
cate) (gss init sec context) to the server. The server
can then take an access control decision based on the infor-
mation that is provided to it, and in the case of success will
establish a security context (gss accept sec context).
In the case that the client has asked for a mutual authenti-
cation, the server will send back a token, that will be veri-
fied by the client before he establishes his side of the secu-
rity context (the client loops gss init sec context until
he receives the server’s token). From that moment on, the
client and server application can use the per message secu-
rity services provided by the GSS-API such as encryption
(gss seal, gss unseal) and digital signature (gss sign,
gss verify). When the connection is broken off, the secu-
rity context will be deleted (gss delete sec context).

4. Applications

SESAME is available for a range of Unix platforms in-
cluding Linux [1], and the applications described in this sec-
tion were developed for Linux but should port to the other
Unix platforms.

4.1. telnet

4.1.1. General

Telnet is a client-server based program, that allows users
to work on remote computers. The main goal of telnet is
to make an environment-independent representation of the
transmitted data. It was meant to be used both for terminal
to mainframe connections and for terminal to terminal con-
nections and process to process communications. Nowa-
days, it is mainly used to get a remote shell across the net-
work.

4.1.2. Authentication

A stronger authentication mechanism needed to be imple-
mented. The current telnet implementations are based on
passwords, or on the caller’s (pretended) IP address. The
SESAME architecture provides a way to achieve strong au-
thentication using its GSS-API implementation.

The latest BSD UNIX telnet source code, released in Oc-
tober 1995, has also a built-in facility to negotiate this au-
thentication [4]. This facility is a framework for any se-
curity system to perform the authentication, but it does not
actually implement any authentication mechanism. It does
follow the basic GSS-API client-server setup.

During the implementation process we encountered sev-
eral problems:



1. Buffer round-trip:

One of the first problems we encountered was the fact that
the token sent by the client to the server would not be re-
ceived in full. Looking at the transmitted tokens, we no-
ticed that telnet sent about 1500 bytes, but telnetd only
processed about 500 of them before stating the suboption
was not properly terminated and processing the next option.
The problem was that when telnetd receives a suboption, it
places the suboption’s data in a static circular buffer (read-
ing or writing past the end wraps around to the beginning)
of 512 bytes long. As the security token sent with this sub-
option is much longer, it wrapped a couple of times around
this buffer.

2. Environment variables:

At several points in SESAME’s code, SESAME needs to
get information from the environment of the user that starts
up the application. Since telnetd clears its environment vari-
ables during the start-up procedure, they are of course not
available. Our solution consists of setting these with the
setenv() function before actually calling the SESAME
routines.

3. Autologin:

When SESAME authentication finally succeeds, this result
has to be passed to the rest of telnetd’s code so it knows that
no password-based authentication is needed. In order to do
this, the autologin variable should be set to AUTH VALID,
as is explained in the telnet documentation. Only when it is
set to this value, telnetd will try to launch /bin/login in a
’special’ way and will not prompt the user for a password.

The first thing to do was to set autologin to AUTH VALID

once successful SESAME authentication had been accom-
plished (it was set to AUTH USER). But telnetd would not try
to launch /bin/login in this special way. The problem
was that somewhere, in a quite uncommon place, this value
was always reset to AUTH USER if it had the AUTH VALID

value. Deleting this line fixed this problem.

Even then, autologin was still not successful. To lo-
gin without supplying a password, telnetd had to provide
/bin/login the user’s name. This seemed to be done
by the name variable. Debugging information showed that
this variable was always empty. The pointer to this name
buffer is passed-by-value several times to subfunctions (so
the buffer itself is passed-by-reference), but we could not lo-
cate the place where the string got filled with the user name
available in auth name() (and apparently it did not get
filled at runtime either). So we decided to put the name in
a global variable (savename) and copy it in telnetd’s name
buffer when leaving auth wait().

4. Stop default behavior:

The need for strong authentication is now hard-coded
in sesamized telnet, unlike normal telnet which will fall
back to password-based authentication after an unsuccess-
ful strong authentication.

4.1.3. Encryption

To ensure data confidentiality, users should be given the
possibility to encrypt their telnet session, both from the
client to server and server to client. This has been realized
using SESAME’s GSS-API.

Telnet has also included facilities to add encryption. Un-
fortunately, the ENCRYPTION option Internet Draft never
made it to an RFC status, and is now waiting for telnet’s
author David Borman to continue his work. Due to U.S. ex-
port restrictions of software using encryption, the encryp-
tion code has also been removed from the source code that
is available outside the U.S.

As explained in the AUTH ENCRYPT Internet-Draft, en-
cryption should start as soon as successful authentication
has taken place.

Some additional care needs to be taken. Telnet puts data
from the network in a buffer (circular buffers are used in the
client). These buffers can be flushed anytime: if the data
makes part of an option negotiation, it can either be im-
mediately processed (putting the client or server in another
’state’), or, if it is (part of) a suboption, it is pushed in the
suboption buffer until the end of suboption is received. Data
meant for the (pseudo)terminal can also be treated immedi-
ately. So except for suboption negotiation, telnet is never
waiting for a complete token to be received.

If we want to encrypt bytes from a buffer before send-
ing it, what we will finally have to do, is send a token of
length . At the other side of the communication, it
will only be possible to unwrap this token when all bytes
are received. This creates two problems:

1. The receiving side will have to wait until bytes are re-
ceived. As it does not know beforehand, this length has to
be sent before sending the token released by gss wrap. An-
other possibility (e.g. used in the telnet suboptions) would
be the use of an escape character.

2. The encryption will imply a network traffic overhead.
This might not seem important but it is. In most cases, for
client to server traffic will be much smaller than . Even
worse in the usual case (character-by-character mode) char-
acters are sent over the network one by one (when the client
host is slow and the user is typing extremely fast it can hap-
pen that more than one character is sent at once). While this
is a bad characteristic of telnet (one character typed is one
full IP packet on the network), using the SESAME GSS-



API would make it even worse: a bunch of miscellaneous
information will be added to the one encrypted character.

To solve all previously mentioned problems, it was de-
cided to add two new GSS-API calls:

gss wrap char()

gss unwrap char()

These are implemented using DES in Cipher FeedBack
mode (CFB). The encryption of one character will rely on
the preceding characters. The implementation will also re-
sult in an output token of exactly the same length as the
input token, so that simple calls to these GSS-API routines
can be made without needing to add another buffer to telnet,
and the network overhead due to encryption will be nonex-
istent.

4.2. rtools

4.2.1. General

The rtools are a suite of remote host-to-host communica-
tion programs. One of the major features of the tools, is
the ability to access resources (files, programs) on the re-
mote host without explicitly logging into the remote host.
We have focussed on securing three of the important rtools:
rlogin (remote login), rsh (remote shell) and rcp (remote file
copy). The version of code used was the Linux NetKit-0.09
package.

4.2.2. Authentication

A stronger authentication mechanism needed to be imple-
mented. The current rtools implementation is based on
trusted hosts and is very weak. SESAME provides the ser-
vices necessary for strong authentication of both client and
server.

1. Environment Variables:

All of the rtools clear the environment variables during the
start-up procedure. Similarly to telnet we saved the environ-
ment variables and used setenv() function before actually
calling the SESAME routines.

2. Common Library:

Since there was such a large amount of code that would be
common to both servers, and also common to all clients, it
made sense to develop a library of functions that could be
used by all rtool client and server applications.

3. Server Authenticating a Client:

A single line change to the server programs was required
for client authentication, with all work done in the library.

After the SESAME authentication had been performed, the
normal server processing was resumed, with the exception
that the host and paranoia checking were deleted. The orig-
inal code checked that the client connection originated from
a reserved port on the client machine. This assumption is at
best weak, and at worst dangerous, since getting root access
on one machine could compromise the security of many
machines, and many accounts. The paranoia code is no
longer needed as SESAME guarantees that a PAC that is ac-
cepted is the verfied user. For each server, the calls to accept
the SESAME connection were identical, and consisted of
calls rauth init(), then rauth accept client which
returned the RauthHeader.

4. Client Authenticating a Server:

After making the initial TCP connection to the server, and
obtaining RauthHandle from rauth init the client calls
rauth client login which takes care of obtaining a PAC
from the SESAME server, transferring it to the application
server and receiving the server’s PAC for mutual authenti-
cation. After this authentication takes place, normal client
processing is resumed.

4.2.3. Encryption

The code has been written to ensure data protection for all
data sent between client to server, and server to client.

Securing the streams was less straightforward than au-
thentication. Normally the rtools put the network stream in
non-blocking mode, and expects the network as a stream,
reading a variable number of bytes, and writing a variable
number of bytes. The problem was to convert the gss wrap

and gss unwrap procedures which worked on blocks of
data into a stream.

Some form of buffering was needed for the block to
stream conversion, as the blocks sent by the application
could be of arbitrary size. The alternative was to encrypt
a byte at a time but this was considered too inefficient espe-
cially for file copies.

In the applications, putting the network stream into non-
blocking mode was turned off. If it was left on, the reading
of a block of encrypted data, would have to poll or wait for
the end of the encrypted block, or to keep retrying to send
all of the encryption blocks before returning. Making this
change does not seem to have altered the operation of the
programs, and is the approach taken by the Kerberos rtools.

4.3. RPC

4.3.1. General

The RPC is a system that allows an application client pro-
gram to execute a procedure on a remote networked server.
It has two main functions: it is the underlying transport



technology for applications such as NFS and it can be used
as a programming tool to allow quicker development of net-
work applications.

4.3.2. Authentication

We chose to secure the ONC RPC source code from Sun
Microsystems that has built-in facilities for different au-
thentication flavors: none, Unix (based on simple UID and
GID), DES (DES encryption with client and server keys)
and Kerberos, and used the SESAME GSS-API to provide
SESAME flavor authentication.

ONC RPC has been designed to be very modular and
we found this design simplified our task immensely. It al-
lows developers to add new authentication flavors with min-
imal change to existing code, and with the addition of new
functions. We added a new flavor called RPCSEC GSS, by
adding routines and modifying only small amounts of exist-
ing code.

The main difficulty was to add an authentication fla-
vor that required multiple phases for authentication. The
existing flavors relied on a single phase of authentication,
whereas GSS-API implementations may require a number
of phases. This was achieved by the client keeping track of
the phase during authentication.

The ONC RPC authentication has been written so
that authentication occurs once where a context (a se-
cure session) is established. The client performs a
call to clnt rpcsec gss create to authenticate and
establish context (similar to the existing system where
the client would call a specific flavor routine such as
clnt authnone create or clnt authunix create).

After the session is established no further authentication
is required. The SESAME ONC RPC gives the user the
choice of both single and mutual authentication. In the nor-
mal ONC RPC way, when the client wants to finish a session
it calls auth rpcsec gss destroy.

4.3.3. Encryption

We have used the GSS-API gss wrap and gss unwrap

routines to secure the data for transit. Currently we en-
crypt the client arguments and server results before they are
passed. We give the user the option of no wrapping, in-
tegrity only, or both integrity and encryption protection for
the data.

ONC RPC uses the External Data Representation (XDR)
to allow heterogeneous systems to communicate. All data
is passed through an XDR encode routine before transit and
XDR decode routine after transit. We chose to place the
gss wrap and gss unwrap routines in the main XDR rou-
tines, and used them if the flavor was RPCSEC GSS.

4.3.4. Access Control

Similarly to OSF DCE, we used SESAME to pass a PAC
from client to server. The server has two choices when
using the PAC: the server can rely on SESAME to exam-
ine the PAC and determine if access should be granted, or
the server itself can examine the PAC and make a finer ac-
cess control decision. Our version of SESAME ONC RPC
supports both methods, with the advantage that comes with
RBAC. SESAME also supports delegation of privileges and
this is potentially very useful for RPC.

5. Performance

We are endeavouring to encourage the use of SESAME
and this has resulted in two main criteria for the design of
our sesamized applications: ease of use, and minimal im-
pact on performance. This section outlines the performance
impact of SESAME, the results being for a single computer
(no network latency) using Pentium 120 MHz, 16 MB RAM
(T1), and Pentium 200MHz MMX, 64 MB RAM (T2) both
running Linux Redhat 4.2.

5.1. telnet

Telnet traditionally used username and password for au-
thentication and provided no data protection. Table 1 shows
the results for sesamized telnet, note that there was no
observable difference in performance between telnet and
sesamized telnet.

Security Service T1 T2
Single Authentication 430 ms 215 ms
Mutual Authentication 445 ms 240 ms
gss wrap character 24.0 s 17.8 s
gss unwrap character 7.20 s 5.60 s

Table 1. Performance Results for SESAME Telnet

5.2. rtools

The rtools traditionally used host based authentication
and provided no data protection. Table 2 shows the results
for sesamized rlogin, rsh and rcp (for rsh and rcp the file size
was 100K). There was no observable difference between
rtools and sesamized rtools.

5.3. RPC

The design of SESAME ONC RPC has the following
philosophy: on the first RPC call single or mutual authen-
tication occurs and a session is established. After the first



Program Security Service T1 T2
rlogin Single Authentication 390 ms 190 ms

Mutual Authentication 410 ms 210 ms
gss wrap character 42.0 s 32.1 s
gss unwrap character 13.0 s 10.1 s

rsh Regular ’rsh cat file’ 7.98 s 5.11 s
SESAME ’rsh cat file’ 14.9 s 6.41 s

rcp Regular ’rcp file’ 3.43 s 3.29 s
SESAME ’rcp file’ 10.4 s 5.41 s

Table 2. Performance Results for SESAME rtools

call only data protection services are provided (authentica-
tion is implicit through the use of the session keys). Note
that the timing results are for a full procedure call, so this
would involve two calls to gss wrap and gss unwrap for
each procedure call using SESAME. The timing results are
shown in Table 3.

Flavor Security Service T1 T2
Unix Single Authentication 0.44 ms 0.32 ms

Procedure Call 0.60 ms 0.35 ms
SESAME Single Authentication 395 ms 210 ms

Mutual Authentication 420 ms 230 ms
Call 0.66 ms 0.42 ms
Call (Int.) 3.4 ms 2.4 ms
Call (Int.+Conf.) 3.6 ms 2.5 ms

Table 3. Performance Results for SESAME ONC
RPC

6. Conclusion

SESAME provides to applications additional security
services that are unavailable with other current technolo-
gies: Kerberos and SSL provide authentication and data
protection, SSH provides authentication, data protection,
data compression and limited access control, and OSF’s
DCE uses Kerberos and adds access control. SESAME on
the other hand provides single or mutual authentication us-
ing either Kerberos or public-key based authentication, data
protection, access control based on RBAC, delegation of
rights, and an auditing service. Using a single architecture
to secure all of the applications also provides uniformity and
interoperability between the applications.
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