
Cryptanalysis of Reduced Variants of the
FORK-256 Hash Function�

Florian Mendel1,��, Joseph Lano2, and Bart Preneel2

1 Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria
Florian.Mendel@iaik.tugraz.at

2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium
{Joseph.Lano,Bart.Preneel}@esat.kuleuven.be

Abstract. FORK-256 is a hash function presented at FSE 2006. Whereas
SHA-like designs process messages in one stream, FORK-256 uses four
parallel streams for hashing. In this article, we present the first cryptana-
lytic results on this design strategy. First, we study a linearized variant of
FORK-256, and show several unusual properties of this linearized variant.
We also explain why the linearized model can not be used to mount attacks
similar to the recent attacks by Wang et al. on SHA-like hash functions.
Second, we show how collision attacks, exploiting the non-bijectiveness of
the nonlinear functions of FORK-256, can be mounted on reduced vari-
ants of FORK-256. We show an efficient attack on FORK-256 reduced to
2 streams and present actual colliding pairs. We expect that our attack
can also be extended to FORK-256 reduced to 3 streams. For the moment
our approach does not appear to be applicable to the full FORK-256 hash
function.

1 Introduction

Recent results in cryptanalysis of hash functions [6,5] show weaknesses in many
commonly used hash functions, such as SHA-1 and MD5. Therefore, the crypt-
analysis of alternative hash functions is of great interest. In this article, we
will study the hash function FORK-256. It was proposed by Hong et al. at
FSE 2006 [2]. FORK-256 was designed to be resistant against known-attack
strategies including the attack by Wang et al. used to break SHA-1 [5].

In this article, we present the first cryptanalytic results on FORK-256 and
stream-reduced variants. On the one hand we explain why the linearized model
can not be used to mount attacks similar to the attack of Wang et al. on SHA-1.
All the characteristics we found in the linearized variant of the hash function
have a low probability to hold in the original FORK-256 hash function. On the
� This previous work was in part supported by grant No.2005-S-062(2005) from the

KISA(Korea Information Security Agency).
�� This author is supported by the Austrian Science Fund (FWF), project P18138.

M. Abe (Ed.): CT-RSA 2007, LNCS 4377, pp. 85–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

86 F. Mendel, J. Lano, and B. Preneel

other hand, we show several unusual properties in the linearized variant of the
hash function, which are not common in the linearized variants of other hash
functions, as for instance the SHA-family [3].

Furthermore, we show how collision attacks, exploiting the non-bijectiveness
of the nonlinear functions of FORK-256, can be mounted on reduced variants of
FORK-256. We show an efficient attack on FORK-256 reduced to 2 streams and
present a colliding message pair. We expect that the attack can be extended to
FORK-256 reduced to 3 streams.

The remainder of this article is structured as follows. A description of the hash
function is given in Section 2. In Section 3, we show that the linearized variant of
the FORK-256 has several unusual properties. Differential attacks on FORK-256
using the linearized variant for finding a suitable characteristic are studied in
Section 4. In Section 5, we give a truncated differential which can be used to
break stream-reduced variants of FORK-256. A sample colliding message pair for
FORK-256 reduced to two streams is given in this section as well. Conclusions
are presented in Section 6.

2 Description of the Hash Function FORK-256

The FORK-256 hash function was proposed by Hong et al. in [2]. It is an iter-
ative hash function that processes 512-bit input message blocks and produces
a 256-bit hash value. Unlike other commonly used hash functions, such as the
SHA-family, it consists of 4 parallel streams which we denote B1, B2, B3 and
B4. In each stream the state variables are updated according to the expanded
message words and combined with the chaining variables after the last step,
depicted in Fig. 1. In the following, we briefly describe the FORK-256 hash
function. It basically consists of two parts: the message expansion and the state
update transformation. A detailed description of the hash function is given in [2].

S
TR

EA
M

1

1(M)

S
TR

EA
M

2

2(M)

S
TR

EA
M

3

3(M)

S
TR

EA
M

4

4(M)

CVn

CVn+1

Fig. 1. Structure of FORK-256

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 87

2.1 Message Expansion

The message expansion of FORK-256 is a permutation of the 16 message words
mi in each stream, where different permutations are used. The ordering of the
message words for each stream is given by the permutations Σ1, Σ2, Σ3 and Σ4,
where Σj(M) = wj = (mσj(0), . . . , mσj(15)).

Table 1. Ordering of the message words

step k 0 1 2 3 4 5 6 7
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ2(i) 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1
σ3(i) 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3
σ4(i) 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6

2.2 State Update Transformation

The state update transformation starts from a (fixed) initial value IV of eight
32-bit registers and updates them in 4 parallel streams of 8 steps. In each step
2 message words are used to update the eight state variables. Fig. 2 shows one
step of the state update transformation of FORK-256.

Aj,i Bj,i Cj,i Dj,i

Aj,i+1 Bj,i+1 Cj,i+1 Dj,i+1

Kj,2i

Wj,2i

<< 5

<< 17

f

<< 9

<< 21

g

Ej,i Fj,i Gj,i Hj,i

Kj,2i+1

Wj,2i+1

<< 9

<< 21

g

<< 5

<< 17

f

Ej,i+1 Fj,i+1 Gj,i+1 Hj,i+1

Xj,2i Xj,2i+1

left side right side

Fig. 2. Step i in stream Bj of FORK-256

The non-linear functions f and g used in each step are defined as follows.

f(x) = x + (x � 7 ⊕ x � 22)
g(x) = x ⊕ (x � 13 + x � 27)

Two step constants Kj,2i and Kj,2i+1 are added in step i; the constants are
different for each step of the stream. The order of the constants is different in

88 F. Mendel, J. Lano, and B. Preneel

Table 2. Ordering of constants

step i K1,2i K1,2i+1 K2,2i K2,2i+1 K3,2i K3,2i+1 K4,2i K4,2i+1

0 δ0 δ1 δ15 δ14 δ1 δ0 δ14 δ15

1 δ2 δ3 δ13 δ12 δ3 δ2 δ12 δ13

2 δ4 δ5 δ11 δ10 δ5 δ4 δ10 δ11

3 δ6 δ7 δ9 δ8 δ7 δ6 δ8 δ9

4 δ8 δ9 δ7 δ6 δ9 δ8 δ6 δ7

5 δ10 δ11 δ5 δ4 δ11 δ10 δ4 δ5

6 δ12 δ13 δ3 δ2 δ13 δ12 δ2 δ3

7 δ14 δ15 δ1 δ0 δ15 δ14 δ0 δ1

each stream. The ordering of the constants for each stream is given in Table 2.
For the actual values of the constants δ0 to δ15 we refer to [2].

After the last step of the state update transformation, the chaining variables
and the output values of the last step of the four streams are combined, resulting
in the final value of one iteration (feed forward). The feed forward is a word-wise
modular addition of the IV and the output of the state update transformation.
The result is the final hash value or the initial value for the next message block.

3 L-FORK-256: A Linearized Variant of FORK-256

In this section, we analyze the linearized variant of FORK-256. We show that
the linearized variant L-FORK-256 has several properties that are not common
in the linearized variants of other hash functions. However, so far we do not see
how these properties can be used in an attack on the original FORK-256 hash
function. L-FORK-256 is constructed by replacing all modular additions in the
hash function by XOR operations.

LH(CVn, Mn) = CVn ⊕
4⊕

j=1

Bj(CVn, Σj(Mn)) (1)

The 4 streams Bj can be described as follows.

Bj(CVn, Σj(Mn)) = CVnA ⊕ Σj(Mn)B ⊕ cj (2)
= CVnA ⊕ MnSjB ⊕ cj (3)

with Sj some permutation matrices, and A, B matrices that describe the action
of L-FORK-256 on the chaining value input, respectively the message input. The
matrices A are of little importance, since:

LH(CVn, Mn) = CVn ⊕
4⊕

j=1

CVnA ⊕ MnSjB ⊕ cj (4)

= CVn ⊕ Mn(S1 ⊕ S2 ⊕ S3 ⊕ S4)B ⊕ (c1 ⊕ c2 ⊕ c3 ⊕ c4) (5)
= CVn ⊕ MnSB ⊕ c, (6)

with S = S1 ⊕ S2 ⊕ S3 ⊕ S4 and c = c1 ⊕ c2 ⊕ c3 ⊕ c4.

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 89

3.1 Action on Special Message Words

The four streams of FORK-256 are quite similar. Only the ordering of the con-
stants and the message words is different in each stream.

Observation 1. If we have a message M with repeating message words M =
m0, m1, . . . , m15 with mi = mj ∀i, j, then Σ1(M) = Σ2(M) = Σ3(M) = Σ4(M).

Observation 2. In L-FORK-256, for inputs that are repeating messages, we
have that B1 = B2 = B3 = B4.

Consequently, the description (2) of a stream can be reduced to:

Bj(CVn, Mn) = CVnA ⊕ MnB ⊕ cj (7)

and the description(6) of L-FORK-256 becomes

LH(CVn, Mn) = CVn ⊕ c, (8)

which is independent of Mn.
Observe that having a repeating message as input is a sufficient condition for

this effect, but it is not a necessary condition. It can be verified that (8) holds
whenever the input message satisfies the following 12 conditions:

m6 = m7 = m9
m3 = m5 = m12 = m13
m1 = m2 = m3 ⊕ m6 ⊕ m15
m0 = m8 = m3 ⊕ m6 ⊕ m14
m10 = m11 = m3 ⊕ m14 ⊕ m15
m4 = m6 ⊕ m14 ⊕ m15 .

(9)

3.2 Fixed-Points

In L-FORK-256 we can easily construct a fix-point for any value of the chaining
variables CVn.

Theorem 1. A two-block message can be used to construct a two-step fixed point
in L-FORK-256.

Proof: By combining two repeated messages, we can construct a fixed point for
L-FORK-256. Let M1 = m‖ · · · ‖m and M2 = m‖ · · · ‖m, then

CVn = LH(CVn−1, M2)
= CVn−1 ⊕ c
= LH(CVn−2, M1) ⊕ c
= (CVn−2 ⊕ c) ⊕ c
= CVn−2 .

��
Theorem 2. Two fixed-points and an arbitrary message block M3 can be used
to produce a collision in L-FORK-256.

90 F. Mendel, J. Lano, and B. Preneel

Proof: Let M1, M2 be repeating messages and let M3 be an arbitrary message.
Define y = L-FORK-256(IV, M3). Then the hash values of M = M3|M2|M1 and
M∗ = M2|M1|M3 are given by:

CV2 = LH(IV, M1) = c ⊕ IV

CV3 = LH(CV2, M2) = c ⊕ c ⊕ IV = IV

CV4 = LH(CV3, M3) = LH(IV, M3) = y

CV ∗
2 = LH(IV, M3) = y

CV ∗
3 = LH(CV ∗

2 , M1) = c ⊕ y

CV ∗
4 = LH(CV ∗

3 , M2) = c ⊕ c ⊕ y = y

��

3.3 Output Dependencies

In L-FORK-256 we found several output dependencies. However, statistical tests
show that these are not present in the original hash function.

Observation 3. Three linear dependencies exist between the 256 output bits of
L-FORK-256. These 3 dependencies are the following:

127∑

i=0

w2i+1 = 0,
128∑

i=1

w2i = 0,
160∑

i=33

wi = 0 . (10)

From (10) it follows that the parity of the output of L-FORK-256 is constant.

4 Differential Analysis

In this section, we analyze the security of FORK-256 against differential attacks.
We study the impact of the type of attack that was used by Wang et al. to
break SHA-1 [5]. The attack can be summarized as follows. First, find a collision
producing characteristic with high probability in the linearized variant of the
hash function. Second, use random trials to find a message pair that follows the
linear characteristic.

4.1 Finding a Characteristic

Finding a collision in the linearized variant of FORK-256 is not difficult since
it depends only on the differences in the message words. Two messages M and
M∗ = M ⊕ Δ collide if and only if:

h∗
1 ⊕ h1 = (M ⊕ Δ)SB ⊕ IV ⊕ c ⊕ (MSB ⊕ IV ⊕ c) = ΔSB = 0 (11)

The matrices S and B are described in Section 3. A collision-producing difference
can be found by solving the set of linear equations given in (11).

Furthermore, the following theorem shows that every near-collision [1] can be
turned into a collision with only a minor increase in complexity.

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 91

Table 3. Smallest Hamming weight found for FORK-256 and reduced variants

stream collision near-collision
one stream 52 35
1 & 2 384 135
3 & 4 384 288
full hash 1280 704

Theorem 3. For L-FORK-256, every two-block message difference of the form
(Δ, Δ) produces a two-block collision.

Proof:

L-FORK-256((M1 ⊕ Δ)‖(M2 ⊕ Δ)) = LH(LH(IV,M1 ⊕ Δ),M2 ⊕ Δ)
= LH(IV ⊕ (M1 ⊕ Δ)SB ⊕ c,M2 ⊕ Δ)
= (IV ⊕ (M1 ⊕ Δ)SB ⊕ c) ⊕ (M2 ⊕ Δ)SB ⊕ c
= (IV ⊕ M1SB ⊕ c) ⊕ M2SB ⊕ c
= L-FORK-256(M1‖M2)

��

4.2 Minimizing the Number of Conditions

It is difficult to bound the number of conditions that have to be fulfilled in
order to guarantee that the message follows the characteristic in the original
FORK-256 hash function. A commonly used approach is to use the Hamming
weight of the expanded message to approximate the attack complexity. This
approximation is useful for SHA-1, but does not hold in the case of FORK-256.
A property of L-FORK-256 is that collision producing differences with very low
weight in the message, can easily result in very high weights in the internal states
of the four separate streams. Hence, to get a more accurate approximation of
the final attack complexity the weight of the internal state variables has to be
considered as well.

We used algorithms from coding theory to find characteristics with low Ham-
ming weight. Even if the algorithms are probabilistic they are expected to do a
good job as they did in the case of SHA-1 [4]. In Table 3, the smallest found
weights for FORK-256 and reduced variants are shown.

Converting the Hamming weights to numbers of conditions is complicated by
the following issues.

1. One equation may cover several conditions imposed on bits in identical po-
sitions of several registers.

2. One equation may cover conditions imposed on bits in neighboring positions
of several registers.

92 F. Mendel, J. Lano, and B. Preneel

3. Conditions imposed on bits in the MSB position of a 32-bit word may be
fulfilled automatically, due to carry overflow effects.

4. Some conditions might be reworked to linear conditions involving only mes-
sage bits. Such conditions are easy to fulfill and don’t contribute to the
probability of the characteristic.

A rough estimation of the work factor can be made by taking the Hamming
weight of the internal state variables and the weight of the expanded message.
For FORK-256 with all four streams, the estimate probability for a random
message having the chosen differences to follow the linear characteristic and to
collide is 2−1280. The probability for a near-collision is 2−704. These probabilities
are too small to pose a realistic threat to the hash function. Note that the smallest
found Hamming weight for one stream is equal to the local collision given in [2].

4.3 A Differential Characteristic for 4 Steps with Probability 1

For four (out of eight) steps of FORK-256 there exists a characteristic with prob-
ability 1. If we choose the same difference δ in all message words m∗

i = mi ⊕ δ,
for i = 0, . . . , 15 and differences in all chaining variables A′

j,k = · · · = H ′
j,k = δ

for j = 1, . . . , 4 for a k < 5 then we have after 4 steps:

A′
j,k+4 = B′

j,k+4 = · · · = H ′
j,k+4 = 0 for j = 1, . . . , 4

This characteristic holds with probability 1 for δ = 80000000. For all the other
cases the probability of the characteristic is approximately 2−HW(δ)∗12∗4. It is
difficult to use this characteristic to break FORK-256. To construct a collision
we would need a characteristic (not necessary linear) for the first 4 steps in each
stream that produces the needed differences in all the chaining variables.

5 Truncated Differential Attack

The function f and g map a 32-bit input word to a 32-bit output. By design,
these functions are not invertible (although their linear approximations are).
This means we could try to construct collisions by using values x �= x∗ which
have the property that f(x) = f(x∗) and g(x+δk) = g(x∗+δk). For the analysis,
it is most convenient to consider as difference operation the modular difference:

x′ = x − x∗ mod 232 . (12)

5.1 One Stream

We first consider one stream of the hash function. For the attack, we want to
exploit a truncated characteristic of the following form:

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 93

(0, 0, 0, 0, 0, 0, 0, 0) (13a)
⇓ x �= x∗, f(x) = f(x∗), g(x + δk) = g(x∗ + δk)

(0, x′, 0, 0, 0, 0, 0, 0) (13b)
⇓ ⊕ changes the difference

(0, 0, α, 0, 0, 0, 0, 0) (13c)
⇓ ⊕ changes the difference

(0, 0, 0, β, 0, 0, 0, 0) (13d)
⇓ ⊕ changes the difference

(0, 0, 0, 0, γ, 0, 0, 0) (13e)

The difference in the 5th register can be canceled by adding a message block
with a suitable difference. Alternatively, the characteristic can be concatenated
with a rotated version of itself.

The probability of the first step depends on the difference x′ and on the value
of the constant δk. There are many δk values for which the probability of the
differential equals 0, but there is also a significant fraction for which one can find
at least one x′ such that the probability becomes greater than zero. We call a δk

value weak, if there exists at least one difference x′ for which the probability of
the differential is greater than 0.

5.2 Weak Constants

By doing an exhaustive search we found 2 weak constants for the right side and 4
weak constants for the left side of one stream of FORK-256. The weak constants
are shown in Table 4.

Table 4. Weak constants in FORK-256

side constant x x∗

left side

δ2 AEB691E5 06DEF69A
δ1 6FF2F3E9 4B4D2A05
δ3 67EAC4D8 27A61343
δ7 20D331A5 04549CDC

right side δ10 D73BC777 445C5563
δ14 EDFD4D5B BE452586

These weak constants can be used to break one stream of FORK-256. To break
FORK-256 with more than one stream we would need more weak constants (see
Section 5.4). Therefore, we have to extend the concept of weak constants as
described in the next section.

5.3 Semi-weak Constants: Extending the Idea of Weak Constants

Instead of searching for pairs x, x∗ having zero differences at the output of f and
g, we can extend the search to pairs x, x∗ such that:

94 F. Mendel, J. Lano, and B. Preneel

f(x) ⊕ f(x∗) = Δf
g(x + δk) ⊕ g(x∗ + δk) = Δg

(14)

and

Δf = Δg

Δf � 5 = Δg � 9
Δf � 17 = Δg � 21 ,

where the last condition is equivalent to Δf = Δg � 4. We found many pairs
x, x∗ and constants δk which fulfill (14). A subset of these are given in Table 7
and Table 8 in the appendix. We restrict the search to values Δf and Δg with low
Hamming weight to keep the final attack complexity low. Note that additional
conditions have to be fulfilled to guarantee that the differences at the output of
f and g cancel out within one step. In detail, the probability that the differences
cancel out is approximately 2−3·HW(Δf). Note, that for Δf �= 0 the minimal
Hamming weight is 8.

5.4 The Full Hash Function

If we consider the full hash, then we have to take into account two effects:

1. Due to the different permutations Σj , the message blocks enter in the dif-
ferent streams at different steps. This property complicates the attack.

2. Due to the final addition of the streams, we can convert near-collisions for
each of the streams into collisions for the full hash. This property facilitates
the attack.

If we consider a variant of FORK-256 where the output of the functions f and g
are not considered, then there are no interactions between the different registers
in the streams. For this variant, we can easily construct a collision. Note that
for each xj,i which has a non-zero difference we need one weak constant to
guarantee that the original FORK-256 hash function behaves like the variant.
To minimize the number of (needed) weak constant, we have to minimize the
number of differences in xj = (xj,0, . . . , xj,15), for j = 1, 2, 3, 4. In Table 5, we
list the best results we found for FORK-256 and stream-reduced variants. Since
we would need 12 weak constants to break the original FORK-256 hash function,
this attack strategy is not applicable to FORK-256. We expect a complexity of
at least 212·3·HW(Δf) ≥ 2288 applications of the compression function to find a
collision in FORK-256. However, FORK-256 reduced to 2 streams can be broken
easily with this method as shown in Section 5.5.

5.5 A Collision for Two Streams of FORK-256

In this section, we present a collision for FORK-256 reduced to two streams using
the attack strategy described before. In the following, we will describe how to

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 95

Table 5. Number of weak constants needed to produce a collision in FORK-256 and
stream-reduced variants. Note a ‘x’ denotes a difference in the word xj,i in stream j.

differences stream 1 stream 2 stream 3 stream 4
m6, m12 ------x-----x--x ------------x-x- -x-----xx-----x- -x------x------x
m2, m12 --x--------xx--- --------x-----x- -----x-x----x-x- -x------x--x----
m9, m13 ---------x---x-- ---x-----xx----- ----x-x------x-x ------x---x----x
m2, m6 --x---x----x---x --------x---x--- -x---x--x---x--- -----------x---x

m4, m7 ----x--x-----xx- -------x-----xx- x---------------
m0, m10 x--------xx----- -----x----x-x--- -----x---x--x---
m3, m8, m9, m10 ---x----xx------ --x---x--------- ---x----xx------
m5, m10 -----x-----xx--- --x--------xx--- x---------------
m3, m12 ------x-------xx -------x------xx -x--------------

m0, m9 x--------------- ---x------------
m13 -------------x-- ----x--------x--
m5 -----x------x--- ------------x---
m6 ------x--------x ---------------x
m2 --x--------x---- -----------x----
m12 --------------x- -------x------x-
m3 ------x--------x ---------------x
m4 -------x------x- --------------x-
m9 ---x------x----- ----------x-----
m14, m15 ---x------------ ----x-----------

construct a collision in FORK-256 reduced to stream 1 and stream 2. Note that
the attack would work similar to break FORK-256 reduced to 2 other streams.

Considering the ordering of the message words in stream 1 and stream 2 (see
Table 1), we see that the distance (in number of steps) between m0 and m9 is
4 in both streams. Hence, we need only two weak constants in the attack. The
attack can be summarized as follows.

1. Choose x1,0 = 7AB8131D and x∗
1,0 = 728D1B48 and calculate B1,1 and B∗

1,1.
2. Choose x2,3 = E2E5A2A9 and x∗

2,3 = A6378BEC and calculate F2,2 and F ∗
2,2.

3. Choose suitable values for x1,2, x1,4 and x1,6 such that E′
1,4 = −x′

2,3.
4. Choose suitable values for x2,5, x2,7 and x2,9 such that A′

2,5 = −x′
1,0.

5. We have 24 conditions on B1,0, C1,0, D1,0 that have to be fulfilled to guar-
antee that the differences at the output of f and g cancel out in step 0 of
stream 1. Therefore, we use an arbitrary first message block to get suitable
values for B1,0, C1,0, D1,0 that satisfy all necessary conditions. To find this
first message block takes at most 224 hash computations.

Table 6. A colliding message pair for FORK-256 reduced to two streams

h0 06A09E667 0BB67AE85 03C6EF372 0A54FF53A 0510E527F 09B05688C 01F83D9AB 05BE0CD19

M0
0F427DBAA 06FBF0CB7 0413F646C 0FCE4800E 0AF327AFD 05CB1B99A 00C879908 0FD5EA595
0BA603C95 06CF74DC6 0516E4AD5 01E43C9B5 03A112367 0258259E8 0FC3FA69D 0CD4F8D0C

h1 06A09E667 0C1F86BBC 0D2856B94 052847CA9 0B8D977FE 0EE42EED7 0A309479B 05C5A4DA8

M1
010AE2CB6 000000000 010ABB697 000000000 0197E717C 000000000 01FDE8BA2 000000000
0D4A419E3 0E3082DF1 0E7C9B7DB 000000000 000000000 0B93DF199 000000000 0314E6339

M∗
1

0088334E1 000000000 010ABB697 000000000 0197E717C 000000000 01FDE8BA2 000000000
0D4A419E3 0A65A1734 0E7C9B7DB 000000000 000000000 0B93DF199 000000000 0314E6339

M ′
1
0082AF7D5 000000000 000000000 000000000 000000000 000000000 000000000 000000000
000000000 03CAE16BD 000000000 000000000 000000000 000000000 000000000 000000000

h2 06A09E667 06D320398 00E1A7F40 0A359E80E 0E029DE72 019F5C484 032084418 0836E2FD8
h∗
2 06A09E667 06D320398 00E1A7F40 0A359E80E 0E029DE72 019F5C484 032084418 0836E2FD8

96 F. Mendel, J. Lano, and B. Preneel

6. We also have 24 conditions on F2,1, G2,1, H2,1 in stream 2 that have to be
fulfilled to guarantee that the differences at the output of f and g cancel
out in step 1 of stream 2. Therefore, we have to modify x2,1 to satisfy these
conditions. We can find a suitable value for x2,1 in at most 224 trials.

7. Calculate mi for i = 0, . . . , 15 from the x-values calculated in step 1-6.

m0 = w1,0 = x1,0 − A1,0

m15 = w2,1 = x2,1 − E2,0

m2 = w1,2 = x1,2 − A1,1

m9 = w2,3 = x2,3 − E2,1

m4 = w1,4 = x1,4 − A1,2 *
m10 = w2,5 = x2,5 − E2,2

m6 = w1,6 = x1,6 − A1,3

m4 = w2,7 = x2,7 − E2,3 *
m13 = w2,9 = x2,9 − E2,4

Note that there are 2 conditions on m4. To satisfy both conditions we calcu-
late first m4 = w1,4 = x1,4 − A1,2 and then we use m8 to modify E2,3 such
that m4 = w1,7 = x2,7 − E2,3 holds.

With this method we can easily construct collisions in the FORK-256 variant.
Once we have fixed the values of the chaining variables by using an arbitrary first
message block and have determined x1,0, x1,2, x1,4, x1,6, x2,1, x2,3, x2,5, x2,7, and
x2,9 we can construct many collisions by solving the system of equations given in
step (7) of the attack. We can construct about 2(16−9)·32 colliding message pairs
once we have fixed all the x-values. This can be compared to having 224 neutral
bits [1] in the message. In Table 6, we give a colliding message for FORK-256
reduced to the first 2 streams.

Complexity Analysis. In this section, we will give a detailed complexity analy-
sis of the attack on FORK-256 reduced to 2 streams. The attack basically consists
of 2 parts:

1. Find the values of Table 7 and Table 8 in the appendix
2. Find suitable x-values.

The first part of the attack has complexity of at most 232 ·4 = 234 computations
of f and g. This is equivalent to at most 228 computation of the compression
function of FORK-256. Note that the real complexity might be much lower,
since g is only calculated if Δf is correct. While the first part of the attack is
computational expensive, the second part of the attack has a comparable low
complexity. For each difference in xj,i for j = 1, 2, 3, 4 and i = 0, . . . , 15 we
have to fulfill 24 conditions on the chaining variables and further find 3 suitable
x-values to guarantee the that the difference cancel out after 4 steps. Therefore,
we need 9 x-values in the attack on the first 2 streams. To find all these x-values
and calculating the first block to fulfill all conditions on the chaining variables

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 97

take us at most 7 · 232 calculations of f and g, and 224 hash computations.
Note that the probability for finding a suitable x-value is much higher than 2−32

in practice. Thus, the complexity will be much lower than 229 for this part of
the attack. Hence, the final attack complexity for both parts of the attack is
about 229 for the first collision. Many other collisions can be constructed with
probability 1 afterward.

Improving/Extending the Attack. There are several ways to improve the
attack. In the following we list some of them:

1. The attack can be modified to construct collisions in FORK-256 reduced to
two other streams.

2. As shown by way of an example, the degrees of freedom (the number of
neutral bits) we have in the attack on 2 streams is quite large. Thus, we can
try to extend the attack to 3 streams of FORK-256.

3. Since the number of needed weak constants is too large for an attack on the
original FORK-256 hash function, we could try to construct a near-collision
in the hash function (only 6 weak constants needed).

4. Instead of searching for values (x, x∗) for which Δf = Δg, we can extend the
search to values for which Δf �= Δg, but the differences cancel out due to
carries of the modular addition. Therefore, we have to find a good method to
reduce the search space and the runtime for finding these values, respectively.

6 Conclusions

In this article we presented the first cryptanalytic results on the hash function
FORK-256. We showed that the linearized variant of FORK-256 has several
unusual properties which do not exist in the linearized variants of other hash
functions. We also explained why the linearized model can not be used to mount
attacks similar to the recent attacks by Wang et al. on SHA-like hash functions.

Furthermore, we showed how collision attacks, exploiting the non-bijectiveness
of the nonlinear functions of FORK-256, can be mounted on reduced variants of
FORK-256. We presented an efficient attack on FORK-256 reduced to 2 streams.
Moreover, we expect that our attack can also be extended to FORK-256 reduced
to 3 streams. For the moment our approach does not appear to be applicable to
the full FORK-256 hash function.

However, this does not prove that FORK-256 is secure. Further analysis is
required to get a good view on the security margins of FORK-256.

Acknowledgements

The authors wish to thank Christophe De Cannière, Christian Rechberger, Nor-
bert Pramstaller, Vincent Rijmen, and the anonymous referees for useful com-
ments and discussions.

98 F. Mendel, J. Lano, and B. Preneel

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, edi-
tor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, vol-
ume 3152 of LNCS, pages 290–305. Springer, 2004.

2. Deukjo Hong, Jaechul Sung, Seokhie Hong, Sangjin Lee, and Dukjae Moon. A
New Dedicated 256-bit Hash Function: FORK-256. In Matt Robshaw, editor, Fast
Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria, March
15-17, 2006, Proceedings, volume 4047 of LNCS, pages 195–209. Springer, 2006.

3. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure Hash
Standard, August 2002. Available online at http://www.itl.nist.gov/fipspubs/.

4. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Coding
Theory for Collision Attacks on SHA-1. In Nigel P. Smart, editor, Cryptography
and Coding, 10th IMA International Conference, Cirencester, UK, December 19-21,
2005, Proceedings, volume 3796 of LNCS, pages 78–95. Springer, 2005.

5. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-
1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005.

6. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005. Proceedings, volume 3494 of LNCS,
pages 19–35. Springer, 2005.

Cryptanalysis of Reduced Variants of the FORK-256 Hash Function 99

A Appendix

Table 7. List of (semi) weak constants for the left side of the stream

side constants Δf = Δg x x∗

left side

δ0 11111111 7AB8131D 728D1B48
δ0 88888888 B2D7C3DA 3B10A457
δ1 11111111 DC7A5519 38EC29EF
δ1 11111111 E02717D6 9FED7307
δ1 44444444 C2886A61 545D72A2
δ1 88888888 8DC83B78 1C547838
δ2 22222222 650CA295 4605419A
δ2 44444444 BEF57D44 2CF60FEB
δ3 22222222 E3E8525C 4CA6452C
δ3 44444444 8EA41F57 642967E8
δ3 44444444 7B080CA7 304EB46C
δ4 22222222 64B41C80 4D83EDBA
δ5 44444444 F92C0421 46119614
δ5 88888888 130F16FD 113044A8
δ6 22222222 8DD2989F 3FC9AB68
δ8 11111111 FE26B64C CA52EA30
δ8 11111111 AD85682B 609F1D2F
δ8 22222222 BAF886F0 4BAF0F68
δ8 44444444 B14939BC 0D0B62B8
δ8 44444444 CE341C7A AC04B7A3
δ9 11111111 B16A5B43 97949A93
δ9 44444444 FEF6F543 4D044E8C
δ9 88888888 7AB68B12 68C08524
δ10 88888888 F542812D 71F08875
δ11 88888888 50411ED1 23B25243
δ11 44444444 F7DF0AAC 7C65633B
δ11 22222222 4AB0742B 17E1B95C
δ12 44444444 CE44B12D 8EDD5A2B
δ12 11111111 E940C5B8 C0304FF9
δ12 44444444 86B755E0 73EF1636
δ12 11111111 5566F6BE 3F3136F2
δ13 22222222 48A7C925 279A5753
δ13 44444444 AE36E874 12D10ADA
δ13 22222222 FACB2049 F947DBD2
δ14 22222222 E545F52D 46511638
δ14 88888888 678E6534 02271592
δ14 22222222 CD454CD7 3D6A82F0
δ14 88888888 F3508338 C32F4A66
δ15 22222222 68B8B75D 46A9FF78
δ15 44444444 F7C30C12 56C94895

100 F. Mendel, J. Lano, and B. Preneel

Table 8. List of (semi) weak constants for the right side of the stream

side constants Δf = Δg x x∗

right side

δ0 11111111 87311631 CF174A81
δ0 88888888 9AE34AAD E9BBB576
δ0 88888888 7078180F CA9E34B0
δ1 22222222 8A7B922A 8515FD65
δ1 44444444 49E17C65 D2FAFF64
δ3 11111111 B93446E3 3AEE54AD
δ3 44444444 47233861 190D5338
δ4 22222222 5C40490B 4D886BE9
δ5 44444444 8673BC03 636F7E88
δ5 44444444 CC6F6AFE AAF1DE10
δ6 22222222 249BD62F 717C851E
δ6 22222222 E5C43BC9 9C7E42D8
δ10 11111111 F0D362CD E15DA3A4
δ12 11111111 E2E5A2A9 A6378BEC
δ12 22222222 02FCA84E A822C4E6
δ12 22222222 F150D9B4 DA63A7EA
δ12 22222222 24193476 93C46D96
δ13 22222222 B43BA7D4 A491977E
δ13 22222222 DF3661E0 A6F79CF2
δ13 22222222 DF3661A0 A6F79CB2
δ13 11111111 28E0B213 C91908C7
δ13 44444444 13BB91E2 B7F968E6
δ14 88888888 99394D77 73F1C4C9
δ14 44444444 B5FAEFDB 6A6FE934
δ14 88888888 AC9747A5 77F40F98
δ15 11111111 1D405A4E 0BAE9B75
δ15 22222222 C0D7FE3A 53480ECC
δ15 88888888 AE4B89E3 6EDF99DA
δ15 88888888 AE0B89E3 6E9F99DA

	Introduction
	Description of the Hash Function FORK-256
	Message Expansion
	State Update Transformation

	L-FORK-256: A Linearized Variant of FORK-256
	Action on Special MessageWords
	Fixed-Points
	Output Dependencies

	Differential Analysis
	Finding a Characteristic
	Minimizing the Number of Conditions
	A Differential Characteristic for 4 Steps with Probability 1

	Truncated Differential Attack
	One Stream
	Weak Constants
	Semi-weak Constants: Extending the Idea of Weak Constants
	The Full Hash Function
	A Collision for Two Streams of FORK-256

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

