
RECONFIGURABLE ARCHITECTURES FOR CURVE-BASED CRYPTOGRAPHY ON
EMBEDDED MICRO-CONTROLLERS

Lejla Batina1, Alireza Hodjat2, David Hwang2, Kazuo Sakiyama1 and Ingrid Verbauwhede1,2

1ESAT/SCD-COSIC,
Katholieke Universiteit Leuven

Kasteelpark Arenberg 10, Leuven, Belgium
2El. Engineering Dept.
University of California
Los Angeles, CA 90095

ABSTRACT

This paper discusses architectures for embedded security to
enable various cryptographic services at low cost. To re-
alize the large bit-lengths and complex arithmetic on an 8-
bit embedded micro-controller, several hardware accelera-
tion options for Elliptic and Hyperelliptic Curve Cryptogra-
phy (ECC and HECC) are studied and systematically eval-
uated. Two key factors influence the performance: one is
the communication interface i.e. I/O transfers between pro-
cessor and co-processor and the other one is the boundary
between hardware and software. Our experiments are run
on an 8051 and an AVR micro-controller with the crypto
co-processors implemented on a FPGA.

1. INTRODUCTION

Public-key cryptosystems are present in almost all spheres
of digital communication e.g. for financial, governmental
and medical applications. They allow secure communica-
tions over insecure channels without prior exchange of a se-
cret key and they also enable digital signatures. One of the
most prominent examples is Elliptic Curve Cryptography
(ECC), which was proposed in the mid 1980s by Miller [9]
and Koblitz [7]. In 1988 Koblitz suggested to use the gen-
eralization of Elliptic Curves (EC) for cryptography, the so-
called Hyperelliptic Curves (HEC). One advantage of HECC
resides on the fact that they alow one to work in a smaller
field. More precisely, while typical bit-lengths for ECC are
at least 160 bits (providing the security of 1024-bit RSA),
for HECC of the same level security we can use finite fields
of 80 bits. This fact makes HECC a very good choice for
platforms with limited resources.

Lejla Batina and Kazuo Sakiyama are funded by FWO projects
(G.0450.04, G.0141.03) and FP6 project SESOC. This research has been
also partially supported by the EU IST FP6 projects SCARD and ECRYPT,
by IBBT and NSF.

At this stage we briefly introduce the design environ-
ment GEZEL [5] in which we model the co-designed system
on an example of an 8051 micro-controller. In this applica-
tion, we used the Dalton 8051 ISS to perform cycle-accurate
simulations for our software-only implementation. For the
hardware/software system, we designed our co-processor mul-
tiplier using GEZEL’s hardware description language. The
language syntax is primarily used to describe the FSMD
(finite state machine plus datapath) system model. Thus,
a datapath for the co-processor was designed and its cor-
responding control logic was also designed in the GEZEL
language. After the design of the hardware co-processor,
we attached the co-processor to the input/output ports using
the GEZEL design environment, and then performed tim-
ing and functional verification. GEZEL gives us the abil-
ity to co-simulate in a cycle-exact manner. Upon verifica-
tion of the functionality of the multiplier co-processor, the
GEZEL code is automatically converted to VHDL and input
into Synplicity for FPGA synthesis.

In this paper several hardware acceleration options are
studied and systematically evaluated in order to deploy the
large bit-lengths and complex arithmetic on an 8-bit embed-
ded micro-controller. We notice that two key factors influ-
ence the performance: one is the communication interface
between processor and co-processor, the other is the bound-
ary between hardware and software. However, these two
factors are interconnected i.e. moving the hardware/software
boundary in a suitable way can overcome the drawback of a
huge number of data transfers.

The remainder of this paper is organized as follows. In
Sect. 2 some background information on curve-based cryp-
tosystems is given including the algorithms required. De-
tails of our work and case-studies for various micro-processors
are given in Sect. 3. Results are discussed in Sect. 4.



SW

Multiplier
Multiplier-Adder

2Multiplier-Adder
+

µ−code ROM

SW
SW

I/O Trans.

Case A Case B Case C

Fig. 1. The hardware/software partitioning in the cases A, B
and C.

2. BACKGROUND ON ECC/HECC

Most of the public-key algorithms require the structure of an
algebraic group. In the case of Elliptic Curve Cryptography,
the group of points on an elliptic curve is used. The main
operation in any curve-based primitive is the scalar multi-
plication. The hierarchical structure for operations required
for implementations of curve-based cryptography is as fol-
lows. Point/Divisor multiplication is at the top level. At the
next (lower) level are the point/divisor group operations i.e.
addition and doubling. The lowest level consists of finite
field operations such as addition, subtraction, multiplication
and inversion required to perform the group operations. The
only difference between ECC and HECC is in the middle
level that in this case consists of different sequences of op-
erations. Those for HECC are a bit more complex when
compared with the ECC point operation, but they use shorter
operands.

We now give a short mathematical background for hy-
perelliptic curves and we refer to the algorithms for efficient
arithmetic in the group of points on elliptic curve (for ECC)
and in the Jacobian group (for HECC) [3].

A hyperelliptic curve C of genus g = 2 over GF(2n),
which is given with an equation of the form: C : y2 +
h(x)y = f(x) in GF(2n)[x, y], where h(x) ∈ GF(2n) is
polynomial of degree at most g (deg(h) ≤ g) and f(x) is a
monic polynomial of degree 2g+1 (deg(f) = 2g+1). Some
more conditions should be satisfied. For the genus 2, in the
general case the following equation is used y2 + (h2x

2 +
h1x + h0)y = x5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0. For
our implementation we used the so-called type II curves [4],
which are defined with h2 = 0, h1 �= 1. An elliptic curve is
a hyperelliptic curve of genus g = 1.

We do not give any more details but we stress again that
the crucial operation is finite field multiplication that has to
be performed thousands of times for one scalar multiplica-
tion. Field addition is easy, as we work with binary fields
and inversions can be avoided by use of projective coordi-
nates. Actually those can be traded for more multiplications.
Therefore, we need to find a way to deal with that many
multiplications in order to obtain efficient low-cost imple-
mentations of curve-based cryptography. The point/divisor

 

Mult 

b 

a 

c 

din 

ins 

dout 

8 

84

84 

84 8 

8 

(a)

 

Mult 

b 

a 

c 

din 
dout 

8 

84 

84 

84 

8 

Add 
84

ins 
8

(b)

(c)

Mult1

B1

A1

C1

84

84

84

Add1
84

Mult2

A2

B2

C2

84

84

84

Add2 84

D1

84

D2

84

84 84

Mult1

B1

A1

C1

84

84

84

Add1
84

Mult2

A2

B2

C2

84

84

84

Add2 84

D1

84

D2

84

84 84

Fig. 2. (a) Data path for the initial design (case A). (b)
Data path for the improved design (case B). (c) The co-
processor’s datapath (case C).

scalar multiplication is obtained by use of repeated divisor
addition and doubling. We used the NAF algorithm [3] and
we used the formulae from [4] for doubling and we applied
the same approach to get formulae for addition.

3. IMPLEMENTATION OPTIONS

In the following, three different HW/SW partitioning and the
architecture of implementations are presented. We elaborate
here on various architectural options. These options differ
with respect to the change of the boundary between hard-
ware and software and are shown in Figure 2. The general
idea is given in Figure 1.

Case A: The first choice is to implement only the Galois
field multiplier as a hardware accelerator. The Galois field
multiplication is used frequently in the point/divisor’s addi-
tion and doubling operations. Therefore, as Figure 2 shows,
a hardware datapath includes a Galois field multiplier and
it uses 8-bit data input and output interfaces attached to the
micro-controllers.
Case B: The next level of HW/SW partitioning is to de-
fine an accelerator datapath that can perform all the Galois
field operations in hardware. The key observation is that
in the schedule of divisor’s double and add operations for
HECC there are many expressions of the following form:
d = a · b + c. For this purpose a hardware adder and a
feedback line that can keep the result of the multiplication



Local Storage
32 of 84-bit 

Temporary Variables
RAM 

(128 × 32-bit)

Input-wordOutput-word

32

Top level Controller

ADDRESS7WRRD

Coprocessor Datapath

8
8

88

P3P0P2 P1

AddrInstructionData-out Data-in

8-bit MicrocontrollerRAM

84 84

ROM

84 84

32

32

32 84 …

32

32

32
…

Fig. 3. The block diagram of the hardware architecture.

in hardware was added to the original data path and there-
fore, the number of I/O transfers decreased with not much of
extra hardware. These two options were described in more
detail in [2] for the case of an 8051 processor.
Case C: In this case the point/divisor operations are imple-
mented in hardware where these operations are designed us-
ing the micro-code instructions. Each line of the divisor
addition and doubling operations algorithms can be repre-
sented by one of these micro-code instructions. The scalar
multiplication algorithm is implemented using the C code
on the CPU.

Figure 3 shows the block diagram of the hardware ar-
chitecture which is used in all three cases mentioned above.
The coprocessor includes a datapath, local storage and the
top controller. There are four 8-bit ports that are used for
communication between the micro-controller and the copro-
cessor. Two of them are for the input and output data and the
other two are for coprocessor’s instructions and the address
to access the local storage. Every data transfer to the local
storage (RAM) is through the input-word and the output-
word registers that are 84 bits wide (the word length of the
operation in the coprocessor’s datapath).

The software is divided into two main sections. One is
the routines of micro-code instructions that are used to pro-
gram the coprocessor. These routines implement the divi-
sor’s operations (doubling, addition, and subtraction). Also
the routine that converts the final projective result to the
affine coordinate is implemented using the micro-code in-
structions based on the Fermat’s inversion algorithm. The
second section of the software is the C code which is fi-
nally compiled to micro-controller’s assembly code. The
scalar multiplication algorithm is implemented in software
and calls the routines of divisor’s operations described above.

The local storage unit consists of 128 memory locations
of 32-bit width. The 32-bit word-length is chosen due to
the fact that the maximum word-length of each Block RAM
of the FPGA is 32 bits wide. One temporary variable of
the GF(283) field require four memory 32-but memory lo-
cations. Therefore, there are total of 32 temporary variables
that can store the elements of GF(283). The memory ad-

Table 1. Results for HECC on the 8051 and AVR at 12 MHz.
Impl. Perf. [M Cycles] Perf. [s]
SW only: 8051 1,800 149.8
SW only: AVR 99.8 8.31
8051 - Case A 61.8 5.15
AVR - Case A 2.61 0.218
8051 - Case B 29.8 2.48
AVR - Case B 2.14 0.78
8051 - Case C 7.87 0.656
AVR - Case C 0.938 0.078

dress bus is 7 bits wide to cover the 128 locations (32 vari-
ables) and the coprocessor controller asserts the required
values for the memory read (RD) and write (WR) signal.
Also notice that the input into and out of the local RAM has
to go through the input-word and output-word registers.

4. RESULTS

In this section we give results of the case studies mentioned
above and we discuss these further. The 8-bit micro-control-
lers that we used were 8051 and AVR. The hardware ac-
celerators are attached to the I/O ports of the 8-bit micro-
controllers. These I/O ports are available as “memory-map-
ped” interfaces to the hardware coprocessor. Using the me-
mory-mapped software instructions of the micro-controller,
the required instruction opcode can be assigned to each I/O
port and then used to program the hardware accelerator. This
communication is a one way handshaking process. Upon re-
ceiving the instruction opcode, the coprocessor performs the
task and waits for the next instruction to come. Input and
output data values are also transferred from software to the
hardware in the same fashion.

Pure software figures are included to prove the option
not feasible. Namely, we concluded that although our soft-
ware implementations could possibly be further optimized,
it would still be difficult to achieve an efficient ECC/HECC
implementation.

Table 1 gives the results for HECC for the cases of 8051
and AVR for all 3 architectural options. The known fact that
AVR is much faster than 8051 can be observed. In Table 2
our results for ECC and HECC on an architecture that in-
cludes 8051 micro-controller are compared. The results are
in favor of HECC and this platform is the first one show-
ing that HECC are preferred to ECC in some architectural
solutions. The FPGA platform used is Virtex2.

Table 3 compares the delay of scalar multiplication of a
point/divisor for various ECC and HECC implementation
options using the 8051 platform. FPGA area is given in
number of LUTs without XRAM and ROM which are spec-
ified separately. As it is seen in this table, there is a signif-
icant increase in performance when the field multiplication
is moved into hardware. An additional timing reduction oc-
curs after the point operation signal flow graphs are analyzed
and manipulated, and the new “multiply-and-add” operation
is used. This reduction is a bit bigger for the case of HECC



Table 2. ECC/HECC comparison using the 8051.
Impl. FPGA RAM ROM Perf.

[#LUTs] [Byte] [Byte] [s]
ECC: SW 3,300 980 7,597 144.5
HECC: SW 3,300 1,186 13,926 149.8
ECC: HW/SW 3,868 980 7,597 5.52
(Case A)
ECC: HW/SW 4,210 910 8,739 3.97
(Case B)
HECC: HW/SW 3,600 927 12,789 5.15
(Case A)
HECC: HW/SW 3,781 936 11,524 2.49
(Case B)

Table 3. Comparison with other related work.
Ref. Field Platf. f [MHz] t [ms]
[10] GF(283) ARM7 80 71.56
[1] GF(280) ARM7 80 374
[8] GF(2163) AVR 4 113
[6] GF(2160) 8051 12 4580
our GF(283) 8051 12 2488
our GF(2163) 8051 12 3970

(40%) because the particular formulae for the divisor opera-
tions allowed taking more benefit of this option than for the
case of 163-bit ECC (28%). Comparing ECC and HECC fig-
ures, we observe that HECC not only provides better perfor-
mance, but also deploys a smaller hardware module. This re-
sult presents a unique observation among all previously pub-
lished work. Hence, HECC offers some benefits especially
on embedded platforms mainly due to shorter operands’ bit-
lengths. Also that fact results in less extra hardware because
the multiplier for HECC is half the size of the one for ECC.
The only figure that still favors ECC is the amount of ROM,
which is due to more complex divisor operations.

Additionally, we have calculated figures for the co-pro-
cessor’s usage for the 8051-case and the actual time distribu-
tion that is spent on I/O accesses (Fig. 4). The co-processor
usage is defined as the number of clock cycles for which
datapath is activated divided with the total number of clock
cycles. The co-processor’s usages in total number of cy-
cles are 0.979%, 2.031% and 4.154% for 8051 and 23.189%,
28.282% and 34.855% for AVR for cases A, B and C respec-
tively. For the 8051 case this means that the performance
is actually achieved with a very low hardware utilization.
Namely, by adding some more hardware one could achieve
a speed-up in performance and still maintain a low-cost and
low-power solution. The conclusion is that allocating more
hardware resource in the co-processor, we can reduce the
number of I/O transfers and therefore we obtain higher per-
formance. Due to the fact that the 8051 uses the clock divi-
sion 1:12, the co-processor usage in this case is much worse
than the one of AVR.

5. CONCLUSIONS

This paper discusses various architectural options for em-
bedded security to enable public-key cryptographic services

23.189%

34.855%

4.154%
2.031%0.979%

28.282%

0.0%

10.0%

20.0%

30.0%

40.0%

Case A Case B Case C

Type of HW accelerator

C
o-

pr
oc

es
so

r U
sa

ge

8051

AVR

Fig. 4. The co-processor usage for HECC implementations.

at low cost. For this purpose several hardware acceleration
options are studied and systematically evaluated. The results
show that two crucial factors influence the performance: one
is the communication interface between processor and co-
processor, the other is the boundary between hardware and
software.

6. REFERENCES

[1] S. Baktır, J. Pelzl, T. Wollinger, B. Sunar, and C. Paar. Optimal
Tower Fields for Hyperelliptic Curve Cryptosystems. In Proceedings
of 38th Asilomar Conference on Signals, Systems and Computers, Pa-
cific Grove, USA, November 7-10 2004.

[2] L. Batina, D. Hwang, A. Hodjat, B. Preneel, and I. Verbauwhede.
Hardware/Software Co-design for Hyperelliptic Curve Cryptography
(HECC) on the 8051 µP . In J. R. Rao and B. Sunar, editors, Pro-
ceedings of 7th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), number 3659 in Lecture Notes in
Computer Science, pages 106–118. Springer-Verlag, 2005.

[3] I. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptogra-
phy. London Mathematical Society Lecture Note Series. Cambridge
University Press, 1999.

[4] B. Byramjee and S. Duquesne. Classification of genus 2 curves over
F2n and optimization of their arithmetic. Cryptology ePrint Archive:
Report 2004/107.

[5] GEZEL. http://rijndael.ece.vt.edu/gezel2/.

[6] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Compar-
ing Elliptic Curve Cryptography and RSA on 8-bit CPUs. In M. Joye
and J.-J. Quisquater, editors, Proceedings of 6th International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES),
number 3156 in Lecture Notes in Computer Science, pages 119–132,
2004.

[7] N. Koblitz. Elliptic curve cryptosystem. Math. Comp., 48:203–209,
1987.

[8] S. Kumar and C. Paar. Reconfigurable instruction set extension for
enabling ECC on an 8-bit processor. In Proceedings of International
Conference on Field-Programmable Logic and Applications (FPL)
2004, Antwerp, Belgium, August 30-September 1, 2004.

[9] V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams,
editor, Advances in Cryptology: Proceedings of CRYPTO’85, number
218 in Lecture Notes in Computer Science, pages 417–426. Springer-
Verlag, 1985.

[10] J. Pelzl, T. Wollinger, and C. Paar. Special Hyperelliptic Curve Cryp-
tosystems of Genus Two: Efficient Arithmetic and Fast Implementa-
tion, chapter in Embedded Cryptographic Hardware: Design and Se-
curity. Nova Science Publishers, 2004.


