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Abstract. A vast amount of literature on stream ciphers is directed
to the cryptanalysis of LFSR-based filters and combiners, resulting in
various attack models such as distinguishing attacks, (fast) correlation
attacks and (fast) algebraic attacks. However, very little is known on the
combined effects of these attacks and the resulting cryptographic require-
ments. In this paper, we present a unified framework for the security of
a design against these attacks based on the properties of the LFSR(s)
and the Boolean function used. It is explained why building nonlinear
filters seems more practical than building nonlinear combiners. We also
investigate concrete building blocks that offer a good trade-off in their re-
sistance against these various attacks, and can at the same time be used
to build a low-cost synchronous stream cipher for hardware applications.
Keywords: Combination and filter generator, distinguishing attack, cor-
relation attack, algebraic attack, hardware complexity.

1 Introduction

For efficient encryption of data, cryptography mainly uses two types of sym-
metric algorithms, block ciphers and stream ciphers. In the past decades, block
ciphers have become the most widely used technology. However, as block ciphers
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are often used in a stream cipher mode such as CTR and OFB, stream ciphers
may offer equivalent security at a lower cost.

Designing a secure stream cipher appears to be a hard task. In the NESSIE
competition [38], flaws have been found in all candidates. In fact, unexpected
biases are often detected in designs, especially if the design is based on relatively
new concepts or uses large vectorial Boolean functions of which it is impossible
to calculate all biases and correlations beforehand.

By far the most studied designs are the nonlinear filter and combiner genera-
tors, which are based on LFSRs in conjunction with a Boolean function. So far,
new developments were mostly restricted to the development of separate attacks
which were then applied to a design that is particularly vulnerable to the new
attack. Little attention has been given to the cryptographic design requirements
that result from these attacks combined. The recent ECRYPT stream cipher
competition [21] motivates us to investigate this further.

Although at first sight the vast amount of research on nonlinear filters and
combiners seems to put these designs at a disadvantage compared to newer design
principles, we believe that they can also benefit from the accumulated knowledge
of their underlying mathematics. In fact, if one can develop a stream cipher
that is resistant to all these attacks combined and is still easily implementable
in hardware, confidence in this classical and transparent design can be higher
(of course thorough public evaluation will still be necessary) and hence actual
application can be faster.

In this paper, we study the cryptographic design requirements for filters and
combiners. We study the impact of the most important attacks (distinguishing
attacks, correlation attacks and algebraic attacks) on the building blocks. By
analyzing building blocks that offer optimal resistance against certain attacks,
we establish minimal requirements for the internal state size, the LFSR poly-
nomials and the properties of the Boolean function (number of inputs, Walsh
transform, degree, nonlinearity, algebraic immunity, . . . ). This analysis allows
to establish design criteria for filters and combiners respectively. We then study
some Boolean functions such as power functions and symmetric functions, which
can be interesting design choices as they have some desirable properties and are
easy to implement in hardware.

The outline of this paper is as follows. In Sect. 2, some preliminary concepts
and the general setting of the stream ciphers investigated are introduced. Sect. 3
presents the unified analysis of the cryptanalytic attacks and the resulting cryp-
tographic design requirements. In Sect. 4, we discuss the symmetric functions
and power functions as possible filter functions. Our paper concludes in Sect. 5.

2 Preliminaries

The two basic models of key stream generators are the combination and the
filter generator. A combination generator uses several LFSRs in parallel and
combines their outputs in a nonlinear way (by means of the combining function).
If the output is computed by a nonlinear function (filter function) of some taps



3

of one LFSR, a filter generator is obtained. Note that a filter generator can
always be converted into a combination generator consisting of LFSRs with the
same connection polynomial [47]. The number of parallel LFSRs depends on the
number of variables that uniquely determine the function. In this section, we
list some properties of the two building blocks that are used in these generators,
namely LFSRs and Boolean functions. For a more thorough treatment we refer
to [28, 45].

2.1 Linear Feedback Shift Registers

Definition 1 A Linear Feedback Shift Register (LFSR) of length L is a collec-
tion of L 1-bit memory elements s0

t , s
1
t , . . . , s

L−1
t . At each time t the memory is

updated as follows:
{

si
t = si+1

t−1 for i = 0, . . . , L − 2

sL−1
t =

⊕L
i=1 ci · s

L−i
t−1 .

(1)

where the ci are fixed binary coefficients that define the feedback equation of the
LFSR. The LFSR stream (st)t≥0 consists of the successive values in the memory
element s0.

Associated with an L-bit LFSR is its feedback polynomial P(X) of degree d,

P (X) = 1 +
∑L

i=1 ci · X
i. The weight of the feedback polynomial is equal to its

number of nonzero terms. In practical designs, a feedback polynomial is chosen
to be primitive. This implies that every nonzero initial state produces an output
sequence with maximal period 2L − 1, which is also called a pn-sequence.

For many cryptanalytic attacks, it is useful to search low-weight multiples of
the feedback polynomial P (x), see [8, 29, 25]. The number m(D,w) of multiples

Q(X) = 1+
∑D

i=1 ci ·X
i of the polynomial P (X), with degree less than or equal

to D and with weight w, can be approximated by [8]:

m(D,w) ≈
Dw−1

(w − 1)! · 2L
. (2)

It is interesting to know from which Dmin we can expect a first multiple Q(X)
of weight w to start appearing. It follows from (2) that:

Dmin(w) ≈ (2L · (w − 1)!)
1

w−1 . (3)

The most efficient approach, known to date, to search for these low-weight
multiples is a birthday-like approach, see [25]. The precomputation complexity
P needed to find all multiples Q(X) of weight w and degree at most D can be
approximated by:

P (D,w) ≈
D⌈w−1

2 ⌉

⌈w−1
2 ⌉!

. (4)

Note that these numbers are also valid if the polynomial is the product of several
primitive polynomials with coprime degree [29].
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2.2 Boolean Functions

A Boolean function f is a mapping from F
ϕ
2 into F2. The support of f is defined

as sup(f) = {x ∈ F
ϕ
2 : f(x) = 1}. The cardinality of sup(f) represents the weight

wt(f) of the function.
A Boolean function can be uniquely represented by means of its algebraic

normal form (ANF):

f(x) = f(x0, . . . xϕ−1) =
⊕

(a0,...,aϕ−1)∈F
ϕ
2

h(a0, . . . , aϕ−1)xa0
0 . . . x

aϕ−1

ϕ−1 , (5)

where f and h are Boolean functions on F
ϕ
2 . The algebraic degree of f , denoted

by deg(f), is defined as the highest number of variables in the terms xa0
0 . . . x

aϕ−1

ϕ−1

in the ANF of f .
Alternatively, a Boolean function can be represented by its Walsh spectrum:

Wf (ω) =
∑

x∈F
ϕ
2

(−1)f(x)⊕x·ω = 2ϕ−1 − 2wt(f ⊕ x · ω) , (6)

where x · ω = x0ω0 ⊕ x1ω1 ⊕ · · · ⊕ xϕ−1ωϕ−1 is the dot product of x and ω. We
will use the following two well-known formulae for the Walsh values:

{

∑

ω∈F
ϕ
2

Wf (ω) = ±2ϕ

∑

ω∈F
ϕ
2

W 2
f (ω) = 22·ϕ ,

(7)

where the second equality is known as Parseval’s theorem.
Several properties are of importance for Boolean functions from a crypto-

graphic viewpoint. A function is said to be balanced if wt(f) = 2ϕ−1 and thus
Wf (0) = 0. The nonlinearity Nf of the function f is defined as the minimum
distance between f and any affine function; it can be calculated as Nf =
2ϕ−1 − 1

2 maxω∈F
n
2
|Wf (ω)|. The best affine approximation l(x) is associated

with this notion. We will say that f has bias ǫ if it has the same output as
its best affine approximation with probability 0.5 + ǫ. It is easy to see that

ǫ = Nf/2ϕ − 0.5 =
maxω∈F

n
2
|Wf (ω)|

2ϕ+1 . A function f is said to be correlation-
immune [46] of order ρ, CI(ρ), if and only if its Walsh transform Wf satisfies
Wf (ω) = 0, for 1 ≤ wt(ω) ≤ ρ. If the function is also balanced, then the function
is called ρ-resilient. Two important bounds hold for the bias ǫ:

{

ǫ ≥ 2−ϕ/2−1

ǫ ≥ 2ρ+1−ϕ ,
(8)

where the first bound is due to Parseval’s theorem and equality holds only for
bent1 functions; the second bound reflects the trade-off between resiliency and
nonlinearity (see [11]).

1 Stream ciphers typically do not use bent functions because they are not balanced.
The size of the smallest bias to be found in balanced Boolean functions is still an
open problem, but some bounds have been presented, see [24] for an overview. In this
paper, we will often consider bent function as the best achievable scenario. Practical
designs will not be as good however and will need extra security, as we will explain.
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The lowest degree of the function g from F
ϕ
2 into F2 for which f · g = 0 or

(f ⊕ 1) · g = 0 is called the algebraic immunity (AI) of the function f [35]. The
function g is said to be an annihilator of f if f · g = 0. It has been shown [13]
that any function f with ϕ inputs has algebraic immunity at most ⌈ϕ

2 ⌉.

A vectorial Boolean function F from F
n
2 into F

m
2 , also called (n,m) S-box,

can be represented by an m-tuple (f1, . . . , fm) of Boolean functions fi on F
n
2

(corresponding to the output bits).

3 Security Analysis

During the last two decades, several classes of attacks have been proposed on the
filter and combination generator. In this section, we will thoroughly investigate
these different attacks and will derive minimal requirements that the LFSRs and
Boolean functions should satisfy. Our goal is to investigate whether it is possible
to construct practical and secure filter or combination generators with 80-bit key
security and low hardware cost, which implies that we should keep it close to the
edge of the minimal requirements while at the same time keeping a reasonable
security margin.

For most attacks, our analysis reflects the currently known attacks described
in the literature, but we now relate these attacks directly to the mathematical
properties of the concrete building blocks used. Our treatment of distinguishing
attacks combines and extends the ideas of the recent work done in [36, 20] to
concrete distinguishing attacks on all filter and combination generators. It follows
that distinguishing attacks are very similar to correlation attacks but are often
stronger, as they can use many linear approximations simultaneously and do not
need a decoding algorithm. Note also that resynchronization mechanisms are not
discussed in this paper. A secure resynchronization mechanism of the scheme is
also necessary. We refer to [14, 2] for more details concerning resynchronization
attacks.

3.1 Tradeoff Attacks

Time-Memory-Data Tradeoff attacks [3, 27, 4] are generic attacks against stream
ciphers. To prevent these attacks, the internal state should be at least twice the
key size. Consequently, with an 80-bit key, the LFSR has at least a length of 160
bits. In the following, we will investigate the security of filter and combination
generator with an internal state of 256 bits, and thus taking a sufficient security
margin. This allows us to quantify our analysis, but of course it is easy to adapt
the framework to other security parameters.

Recently, it was noticed that a tradeoff attack can also be mounted directly
on the secret key, irrespective of the internal state size [30]. To prevent this
attack, the size of the initialization vector should be equal to 80 bits, the same
size as the key [16]. Note that it is the responsibility of the implementer to make
sure that the initial iv is chosen in a correct way to prevent tradeoff attacks.
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3.2 Berlekamp-Massey Attacks

The linear complexity of a bit stream (st)t≥0 is equal to the length of the shortest
LFSR generating that stream. For a Boolean function of degree d, the linear
complexity LC of the resulting key stream generated by a filter generator is
upper bounded by

∑d
i=0

(

L
i

)

. Moreover, it is very likely that the LC of the key

stream is lower bounded by
(

L
d

)

and that its period remains equal to 2L−1. If the
constituent LFSRs of the combination generator have distinct degrees greater
than 2 and initial state different from 0, then the LC of the key stream generated
by a combination is equal to f(L1, . . . , Ln), where the ANF of f is evaluated
over the integers. We refer to [45, 32] for more details.

The Berlekamp-Massey attack requires 2 · LC data and has complexity of
LC2. For a key stream generator with internal size equal to 256 and a Boolean
function of sufficiently high degree, this attack is clearly of no concern. A degree-
7 function will be sufficient for a nonlinear filter. For combiners the calcula-
tion is more complex as it depends on the size of the LFSRs and on the ANF
of the Boolean functions, but also here we start having resistance against the
Berlekamp-Massey attack from degree 7.

3.3 Distinguishing Attacks

The distinguishing attack we describe here is based on the framework devel-
oped in [20] combined with the mathematical results from [36]. We extend the
framework for the filter generator and also develop the attack for the combiner
generator.

Filter generator. The idea of the attack is the following. The LFSR stream has
very good statistical properties, but of course there are linear relations, which
are determined by the feedback polynomial P (X) and its multiples Q(X), where
the cryptanalyst first needs to find the latter in a precomputation step.

Given a linear relation Q(X) of weight w in the LFSR stream, the same
relation for the corresponding bits of the key stream will hold with some prob-
ability different from one half, because the Boolean function f does not destroy
all linear properties. This probability is determined by the combined action of
all affine approximations of the Boolean function. This interaction is governed
by the piling-up lemma [34], and can be expressed as [36]:

ε′ =

∑2ϕ−1
ω=0 (Wf (ω))w

2ϕ·w+1
. (9)

Some important implications of this formula are as follows:

– The size of the bias will decrease rapidly with the weight of the linear relation.
Hence, the LFSR polynomial should not have a low weight or have low-weight
multiples of low degree.
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– For even weight, the biases will all work together to the advantage of the
cryptanalyst, whereas for odd weight there is partial compensation due to
the varying signs in the sum.

– To minimize the observed bias, the Boolean function should have a flat Walsh
spectrum. This incorporates a high nonlinearity (as the largest terms will
dominate in (9), especially for increasing weight) but also other factors have
to be taken into account: the number of times the highest Walsh value is
reached, the signs of the highest values, . . . For instance, one can see that
the plateaued functions are not an optimal choice against these attacks: they
have high nonlinearity, but the maximal Walsh value occurs very often. The
function with the best resistance to this attack is the bent function, which
has an entirely flat Walsh spectrum. We will hence use this function here to
establish upper bounds for the complexity of these attacks.

To distinguish the key stream from random, the number of samples needed
is in the order of 1

ε′2 , which is also the time complexity of the attack. The data
complexity is the sum of the degree of the relation Q(X) and the number of
samples needed. It is possible to decrease the data complexity to some extent by
using multiple relations simultaneously.

We now study the impact of this attack on the bent functions, as these offer
the best resistance against this distinguishing attack. We assume our LFSR has
an internal state of 256 bits and investigate the data complexity of the attack
as a function of the number of inputs. By combining (7), (8) and (9), we can
calculate that the bias for bent functions can be written as:

ε′ = 2−(⌈w/2⌉−1)·ϕ−1 . (10)

A cryptanalyst is interested in finding the weight w for which weight the attack
complexity is minimal. For very low weight w, the degree of Q(X) will be pro-
hibitively high as shown by (3). For very high weight w, the bias (10) will be
too small. We hence expect an optimal tradeoff somewhere in between. These
optimal values for some bent functions with an even number of inputs are shown
in Table 1.

The conclusion of this table would be that, if we take into account the
NESSIE requirements, no 256-bit LFSR with a Boolean function with less than
20 inputs can be made secure against this distinguishing attack! However, we
have to make two important observations:

– The precomputation time to find the necessary multiples Q(X) is very high
(in the order of 2150, governed by (3) and (4). A discussion on the amount
of precomputation we can allow is an important topic of discussion. Note
that this also applies to other attacks such as trade-off attacks, correlation
attacks and algebraic attacks.

– There has been some debate on the relevance of distinguishing attacks re-
quiring long key streams during the NESSIE stream cipher competition [44].
Whereas time complexity is only a matter of resources at the attacker’s side,
available data depends on what has been encrypted by the sending party.
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Table 1. Optimal complexities of the distinguishing attacks on the filter generator (for
bent functions)

Inputs Weight log
2
(ε′) log

2
(Dmin) log

2
(attack compl.)

4 10 -17.00 30.50 34.12
6 8 -19.00 38.33 39.17
8 8 -25.00 38.33 50.00
10 6 -21.00 52.58 52.58
12 6 -25.00 52.58 52.80
14 6 -29.00 52.58 58.03
16 6 -33.00 52.58 66.00
18 6 -37.00 52.58 74.00
20 6 -41.00 52.58 82.00

Hence, we propose to limit the maximum amount of key stream generated
from a single key/iv pair to 240 bits (practical assumption), after which the
scheme should resynchronize. This measure prevents the appearance of low-
weight multiples: from (3) it follows that normally no multiples of weight
less than 8 exist with degree less than 240. Now, we can recalculate the best
attack complexities, by adding the extra constraint log2(Dmin) < 40. We
now obtain the values in Table 2. From the table, it follows that, under this
practical restriction, nonlinear filters can be built which are secure against
distinguishing attacks starting from 14 inputs. Note that the restriction of a
single key stream to 240 bits also provides some protection other cryptana-
lytic algebraic attacks, as explained below.

Table 2. Optimal complexities of the distinguishing attacks on the filter generator (for
bent functions), restricting the length of a single key stream to 240 bits.

Inputs Weight log
2
(ε′) log

2
(Dmin) log

2
(attack compl.)

4 10 -17.00 30.50 34.12
6 8 -19.00 38.33 39.17
8 8 -25.00 38.33 50.00
10 8 -31.00 38.33 62.00
12 8 -37.00 38.33 74.00
14 8 -43.00 38.33 86.00
16 8 -49.00 38.33 98.00
18 8 -55.00 38.33 110.00
20 8 -61.00 38.33 122.00

Combination generator. For combination generators, the attack can be im-
proved by using a divide and conquer approach. Let us assume we have a com-
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biner with ϕ LFSRs and that the Boolean function has resiliency ρ. The average
length2 of one LFSR is thus 256

ϕ . The attacker now mounts the same distinguish-
ing attack, restricting himself to r LFSRs, where r must be of course strictly
greater than the order of resiliency ρ. Again, we first search for a low-weight mul-
tiple of this equivalent 256·r

ϕ -length LFSR, and then try to detect the bias that
remains of this relation after the Boolean function. From the piling-up lemma,
it follows that this bias is as follows:

ε′ =

∑

ω∈S(Wf (ω))w

2ϕ·w+1
, (11)

where the set S is defined as:

S = {ω|wt(ω) > ρ and ω < 2r} , (12)

assuming, without loss of generality, that the attacked LFSRs are numbered
0, 1, . . . r− 1. This equation can be deduced from logical arguments and we have
verified its correctness through simulations.

This divide and conquer approach gives the attacker some advantages com-
pared to the case of the nonlinear filter:

– If the resiliency of the Boolean function is low, the length of the attacked
equivalent LFSR can be low. First, this will allow the attacker to perform the
precomputation step governed by (3) and (4) much faster. Second, the length
of the low-weight multiples will be much lower, making the data complexities
feasible for much lower weights, where the detectable biases will be much
larger as shown by (11). Note that when 256·r

ϕ is very small, we will even be
able to mount a powerful weight-2 attack without precomputation step: this
will just correspond to the period of the small equivalent LFSR. As shown
in [20], such an attack can be easily turned into a key recovery attack.

– If the resiliency of the Boolean function is high, we will still have the ad-
vantages explained in the above point, but to a lesser extent. But here the
tradeoff between resiliency and nonlinearity (8) will come into play, resulting
in higher Walsh values in (11) and hence a higher bias.

It follows that it is much harder to make the combiner model resistant to this
distinguishing attack. We show the cases where the optimal tradeoff is achieved
in Table 3. The setting in this table is as follows: the cryptographer can, for a
given number of inputs, choose optimal Boolean functions, namely such that one
of the two bounds in (8) holds. 3 He tries to choose ρ such that he maximizes the
resistance to the distinguishing attack. The attacker chooses the optimal number

2 in practical designs, the lengths of the LFSRs have to be distinct. An attacker will
of course try to attack the smallest LFSRs first. We here take the average length of
the LFSRs to keep the analysis simple and to give a lower bound for the strength of
this attack.

3 Note that this is again an optimal case for the cryptographer. The complexities
given in the table are hence upper bounds. On real functions the complexities will
be lower.
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r of LFSRs he attacks, as well as the optimal weight of the multiples he will use.
We see that it is even harder to obtain security here. In fact, we would need 36
inputs (not shown in the table) and an optimal Boolean function to achieve full
security.

Table 3. Optimal complexities (for the cryptanalyst) of the distinguishing attacks on
the combination generator for optimal functions (for the cryptographer)

Inputs Resiliency r LFSRs Weight log
2
(ε′) log

2
(Dmin) log

2
(attack compl.)

4 1 2 6 -13.00 26.98 27.57
6 2 4 6 -16.68 35.51 35.81
8 3 6 6 -20.54 39.78 41.57
10 4 5 4 -21.00 43.53 43.96
12 5 6 4 -25.00 43.53 50.02
14 6 8 4 -25.83 49.62 51.97
16 7 10 4 -27.19 54.19 55.29
18 8 12 4 -28.78 57.75 58.65
20 9 14 4 -30.48 60.59 61.79

Again, we propose to limit the maximum amount of key stream obtained
from a single key/iv pair to 240 bits. This gives us the results shown in Table 4.
We now see that, under ideal assumptions for the cryptographer, he can make a
combiner which is secure starting from 18 inputs.

Table 4. Optimal complexities (for the cryptanalyst) of the distinguishing attacks on
the combination generator for optimal functions (for the cryptographer, restricting the
length of a single key stream to 240 bits.)

Inputs Resiliency r LFSRs Weight log
2
(ε′) log

2
(Dmin) log

2
(attack compl.)

4 1 2 6 -13.00 26.98 27.57
6 2 4 6 -16.68 35.51 35.81
8 3 6 6 -20.54 39.78 41.57
10 4 7 6 -26.14 37.22 52.28
12 5 9 6 -29.98 39.78 59.96
14 6 10 6 -35.54 37.95 71.08
16 7 12 6 -39.37 39.78 78.73
18 8 13 6 -44.91 38.36 89.81
20 9 15 6 -48.73 39.78 97.46

It is important to note that these lower bounds will be very hard to ap-
proach in reality due to the difficulty of finding practical functions that have
properties close to the optimal case described here, and due to the fact that our
lower bounds consider equal LFSR lengths. In reality all LFSR lengths need to
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be distinct, which will allow the attack to improve his attack significantly by
attacking the shortest LFSRs. The larger the number LFSRs, the more serious
this problem becomes. As a result of this, we believe it is not possible to design
a practical nonlinear combiner, with 256 bits internal state, that can resist to
this distinguishing attack. This in comparison to the case of the filter generator,
where we can succeed to get close to the bounds with actually implementable
functions, as evidenced by the power functions described in Sect. 4. We will now
develop a similar reasoning for the case of fast correlation attacks.

3.4 Fast Correlation Attacks

Correlation and fast correlation attacks exploit the correlation between the LFSR
stream st and the key stream zt. These attacks can be seen as a decoding prob-
lem, since the key stream zt can be considered as the transmitted LFSR stream
st through a binary symmetric channel with error probability p = Pt≥0(zt 6= st).
For the nonlinear filter generator, p is determined by 0.5+ǫ. For the combination
generator, a divide-and-conquer attack as in the case of a distinguishing attack is
possible. Consequently, it is sufficient to restrict the attack to a subset of LFSRs
{i0, . . . , iρ}, such that the following holds:

P (f(x) 6= 0|xi0 = a0, . . . , xiρ
= aρ,∀(a0, . . . , aρ) ∈ F

ρ+1
2 ) 6= 1/2 . (13)

Here, as defined above, the parameter ρ corresponds with the order of resiliency
of the Boolean function.

Then, the attack consists of a fast decoding method for any LFSR code C
of length N (the amount of available key stream) and dimension L (the length
of the LFSR), where the length N of the code is lower bounded by Shannon’s
channel coding theorem:

N ≥
L

C(p)
=

L

1 + p log2 p + (1 − p) log2(1 − p)
≈

ln(2)L

2ǫ2
. (14)

If we want to achieve perfect security against this attack for a 256-bit LFSR and
allowing at most 240 bits in a single key stream, the bias ǫ should be less than
or equal to 2−17. To achieve this, we would need a highly nonlinear Boolean
functions with more than 34 inputs. This can never be implemented efficiently
in hardware. However, the above criterion is far too stringent as actual decoding
algorithms are not able to do this decoding with a good time complexity. We
now look at the current complexities of these decoding algorithms. Besides the
maximum-likelihood (ML) decoding, which has very high complexity of L · 2L,
mainly two different approaches have been proposed in the literature. In the first
approach, the existence of sparse parity check equations for the LFSR code are
exploited. These parity check equations correspond with the low weight multiples
of the connection polynomial. In this way, the LFSR code can be seen as a low-
density parity-check (LDPC) code and has several efficient iterative decoding
algorithms. In the second approach, a smaller linear [n, l] code with l < L and
n > N is associated to the LFSR on which ML decoding is performed. The
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complexity of both approaches highly depends on the existence of low degree
multiples. As shown above, the precomputation time for finding these low degree
multiples is very high. Moreover, the approach requires long key streams and
suffers from a high decoding complexity.

To give an idea of the complexity of these attacks, we concentrate on the
attack of Canteaut and Trabbia [8], since the complexity of the second approach
is based on the Shannon’s channel coding theorem. When parity-check equations
with weight w are used, the required key stream N is approximated by:

(

1

2ǫ

)

2(w−2)
w−1

2
L

w−1 , (15)

and the complexity for the attack can be roughly estimated by

(

1

2ǫ

)

2w(w−2)
w−1

2
L

w−1 . (16)

Note the very strong resemblance between this classical framework for the
correlation attacks and the framework we developed in the previous subsection
for distinguishing attacks. The main difference between the two is that in the
correlation attacks we need a decoding method, whereas in the distinguishing
attacks we just need to apply a simple distinguisher. Analysis of the above for-
mulae learns that the complexity of the decoding procedure is much higher than
for the distinguishing procedure. Even with huge improvements of the existing
decoding procedures, we do not expect this situation to change. Hence we can
conclude that a choice of parameters that makes the design resistant against
distinguishing attacks (explained above), will also make it resistant against cor-
relation attacks.

In the next section we will study the algebraic attacks, which require a
framework that is independent from the distinguishing and correlation attacks.
Whereas the two latter only study linear approximations of the Boolean func-
tion (described by its Walsh transform), the former studies the properties of the
whole ANF of the Boolean function.

3.5 Algebraic Attacks

In algebraic attacks [13], a system of nonlinear equations between input and
output is constructed and subsequently solved. The complexity of solving this
system of equations highly depends on the degree of these equations. In the usual
algebraic attack, equations between one bit of the output of the filter or combi-
nation generator and the initial state of the LFSR are searched. These equations
are then solved by linearization. The lowest possible degree d of these equations,
also called the Algebraic Immunity (AI), is obtained by the annihilators of the
filter or combination function and its complement. The total complexity C(L, d)
of the algebraic attack on a stream cipher with a linear state of L bits and
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equations of degree d is then determined by

C(L, d) =

(

d
∑

i=0

(

L

i

)

)ω

= Dω , (17)

where ω corresponds to the coefficient of the most efficient solution method for
the linear system. We use here Strassen’s exponent [48] which is ω = log2(7) ≈
2.807. Clearly, the number of required key stream bits is equal to D. Note that
in the complexity analysis, the linearization method is used for solving the equa-
tions. It is an open question if other algorithms like the Buchberger algorithm,
F4 or F5 [22] can significantly improve this complexity. Also, the total number
of terms of degree less than or equal to d is considered in the complexity, while
in general nothing is known about the proportion of monomials of degree d that
appear in the system of equations. Therefore, a sufficient security margin should
be taken into account.

Table 5 shows the numerical values for the algebraic attack on an LFSR of
length 256 and AI between 4 and 8. All data in the table are base 2 logarithms.
From the table, it follows that an AI of 5 is currently sufficient to withstand
algebraic attacks in our framework.

The implications for Boolean functions are the following. It has been shown [13]
that the AI of a Boolean function with ϕ inputs can be at most ⌈ϕ

2 ⌉. Our Boolean
function hence needs to have at least 9 inputs. We will of course need to check
that the AI of the Boolean function is large enough. The complexity of the
algorithm to check if there are equations of degree less than or equal to d (cor-
responding to AI equal to d) is slightly better than

(

ϕ
d

)ω
, [35], which is feasible

for most practical functions of interest here.

Table 5. Logarithm of complexities of the algebraic attack

AI Data complexity Time complexity

4 27.40 76.92
5 33.07 92.84
6 38.46 107.97
7 43.62 112.46
8 48.59 136.41

Fast algebraic attacks can be much more efficient than the usual algebraic
attacks. We omit the treatment of fast algebraic attacks here, and refer to our
paper [7].

3.6 Summary of cryptographic properties

The attacks described in the previous sections result in a list of requirements
for the filter and combiner models. As said, we want to achieve, with a 256-bit
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internal state, 80-bit security whilst restricting the maximum amount of key
stream generated from a single key/iv pair to 240 bits.

The feedback polynomials should be primitive and have high weight. The
Boolean function should be balanced, have a high algebraic immunity, and a
Walsh spectrum that is flat, which incorporates high nonlinearity. Concrete val-
ues for these measures are derived from the security analysis against the distin-
guishing attack (which implicitly includes the correlation attack) and the fast
algebraic attack. The filter and combination function should have AI and thus
degree greater than or equal to 6. Moreover, the resistance against fast algebraic
attacks should be checked, as explained in [7], which will often introduce ad-
ditional requirements for the Boolean function. The filter function should have
bias ǫ (corresponding with the nonlinearity) greater than or equal to 2−8. In
order to satisfy this bias, a balanced filter function should depend on at least 14
variables. The combination function should satisfy, besides a high nonlinearity,
a high order of resiliency. The number of input variables must be greater than
or equal to 18. Besides, we have the following particularities for nonlinear filter
and combiner generators:

– For a nonlinear filter, some other attacks have been described in the liter-
ature, such as inversion attacks [26], attacks using decimation of the key
stream [26, 23] and other attacks. Analysis indicates that these attacks can
be prevented by a good choice of the taps of the inputs to the Boolean func-
tion. Golic [26] suggests the use of a full positive difference set for the taps
of the Boolean function.

– In combination generators, the fact that the inputs to the Boolean function
come from different LFSRs creates opportunities for various types of divide
and conquer attacks, as described above. This divide and conquer approach
significantly lowers the complexity of the various attacks compared to filter
generators. This can be partially helped by requiring sufficient resiliency from
the combining function, but this will also create new problems due to the
inherent tradeoff between resiliency and nonlinearity. That aside, another
requirement is that the length of the LFSRs should be distinct to obtain a
high period of the output sequence.

This analysis makes that we are inclined to choose in favor of filter gen-
erators for a classical LFSR-based stream cipher. This prevents the divide and
conquer attacks described above and allows us to choose Boolean functions with-
out having to satisfy the requirement of resiliency. In the following section we will
describe two classes of Boolean functions which have some interesting properties,
and are at the same time easy to implement in hardware.

4 Boolean Functions for the Filter Generator

From the analysis in the previous section, it follows that the two most important
properties a good Boolean function should have are high algebraic immunity and
high nonlinearity. Besides, to be used in practice, they should be implementable
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in hardware at a very low cost. We will now present two classes of functions
that have a low-cost hardware implementation. The first class, the symmetric
functions, have an optimal algebraic immunity, but very low nonlinearity. The
second class, the power functions, have a high nonlinearity and reasonably high
algebraic immunity.

4.1 Symmetric Functions

Symmetric functions [9] are functions with the very interesting property that
their hardware complexity is linear in the number of variables. A symmetric
function is a function of which the output is completely determined by the
weight of the input vector. Therefore, the truth table vf = (v0, . . . , vϕ), also
called value vector, of the symmetric function f on F

ϕ
2 reduces to a vector of

length ϕ + 1, corresponding with the function values vi of the vectors of weight
i with 0 ≤ i ≤ ϕ. We have identified the following class of symmetric functions
with maximum AI:

Theorem 2. The symmetric function in F
ϕ
2 with value vector

vf (i) =

{

0 for i <
⌈

ϕ
2

⌉

1 else
(18)

has maximum AI. Let us denote this function by Fk where k is equal to the
threshold

⌈

ϕ
2

⌉

.

Proof. First we show that the function F⌈ϕ
2 ⌉

⊕ 1 only has annihilators of degree

greater than or equal to
⌈

ϕ
2

⌉

. The annihilators of F⌈ϕ
2 ⌉

⊕ 1 are 0 in all vectors

of weight less than or equal to
⌈

ϕ
2

⌉

. Consequently, the terms which appear in
the ANF of the function correspond with vectors of weight greater than or equal
to
⌈

ϕ
2

⌉

by definition of the ANF. Thus, no linear combination can be found in
order to decrease the degree of the resulting function.

The transformation (x1, . . . , xϕ) 7→ (x1 ⊕ 1, . . . , xϕ ⊕ 1) for all ϕ will map a
symmetric function f with value vector vf to a symmetric function with value
vector equal to the reverse of this value vector, i.e., vr

f . Consequently, the func-

tion F⌈ϕ
2 ⌉

and F⌈ϕ
2 ⌉

⊕ 1 are affine equivalent under affine transformation (com-

plementation) in the input variables for ϕ odd. For ϕ even, the function F⌈ϕ
2 ⌉

is affine equivalent with F⌈ϕ
2 ⌉+1 ⊕ 1. The proof explained above can also be

applied on the annihilators of the function F⌈ϕ
2 ⌉+1 ⊕ 1 for ϕ even. Finally, the

theorem follows from the fact that functions which are affine equivalent in the
input variables have the same number of annihilators of fixed degree. ⊓⊔

By Proposition 2 and Proposition 4 of [9], the degree of these functions are
determined as follows.

Theorem 3. The degree of the symmetric function F⌈ϕ
2 ⌉

on F
ϕ
2 is equal to

2⌊log2 ϕ⌋.
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If ϕ is odd, these functions are trivially balanced because vf (i) = vf (ϕ − i)
for 0 ≤ i ≤

⌊

ϕ
2

⌋

. As shown in Proposition 5 of [9], trivially balanced functions
satisfy the following properties:

– The derivative D1f with respect to 1 is the constant function: f(x)⊕f(x⊕1)
is constant.

– Wf (x) = 0 for all x with wt(x) even.

For ϕ even, the functions are not balanced. But by XORing with an extra input
variable from the LFSR, this property is immediately obtained.

Another problem is that the nonlinearity of these functions is not high. In
particular, maxw∈F

ϕ
2
|Wf (w)| = 2

(ϕ−1
ϕ−1

2

)

for odd ϕ and equal to
(

ϕ
ϕ
2

)

for even ϕ.

Therefore, ǫ ≈ 2−3.15, 2−3.26, 2−3.348 for ϕ = 13, 15, 17 respectively. Note that
the nonlinearity increases very slowly with the number of inputs ϕ: even for 255
input bits, we only get a bias of 2−5.33.

Remark 1. The nonlinearity of this class of symmetric functions corresponds to
the nonlinearity of the functions with maximum AI that are obtained by means
of the construction described in [15]. This construction has the best nonlinearity
with respect to other constructions that have a provable lower bound on the AI
presented in literature so far. An extensive study on the AI and nonlinearity of
symmetric Boolean functions is performed in [5]. It has been shown that there
exists for some even dimensions n other classes of symmetric functions with
maximum AI which have slightly better nonlinearity, but still far too small to
be resistant against the distinguishing attack. Also, no symmetric function with
better bias in nonlinearity compared with the AI has been found in [5].

To summarize, we have identified a class of symmetric functions with very low
hardware requirements and with maximal algebraic immunity. However, the non-
linearity of the design is not good and there may be other problems related to
the trivial balancedness. In applications that can only allow a very small number
of gates, and if one does not care about the possibility of the high-complexity-
precomputation attacks (distinguishing and fast correlation), symmetric func-
tions may be an interesting class of functions to further investigate. Also, one
may consider to use a symmetric function as a building block to increase the
algebraic immunity (by direct sum) of a design at a low implementation cost.

4.2 Power Functions

The idea of using a filter function f derived from a power function P on F
ϕ
2

is as follows: we consider the ϕ input bits to the function P as a word x in
F

ϕ
2 . We then compute the p-th power, y = xp, of this word. The output of our

Boolean function f is then one bit yi for i ∈ {0, . . . , ϕ − 1} of this output word
y = (y0, . . . , yϕ−1). Note that all these functions for i ∈ {0, . . . , ϕ−1} are linearly
equivalent to the trace of the power function P . We now discuss the nonlinearity,
algebraic immunity and implementation complexity of some interesting power
functions.
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Nonlinearity. We will investigate Boolean functions derived from highly non-
linear bijective power functions. These functions have bias ǫ = 2−

ϕ
2 for ϕ even

and 2−
ϕ
2 − 1

2 for ϕ odd, which is very close to the ideal case, the bent functions.
An overview of the different known classes of highly nonlinear power functions
on F2ϕ of degree ≥ 6 is presented in Table 6.

Table 6. Highly Nonlinear Power Functions on F2ϕ of Degree ≥ 6

Exponent Condition on ϕ Name + Reference

2ϕ − 2 all ϕ Inverse [40]

22k − 2k + 1 with k < ϕ

2
and gcd(k, ϕ) = 2 ϕ mod 2 ≡ 0 Kasami class [31]

22k − 2k + 1 with k < ϕ

2
and gcd(k, ϕ) = 1 ϕ mod 2 ≡ 1 Kasami class [31]Pϕ

2
i=0

2ik with k < ϕ

2
and gcd(k, ϕ) = 1 ϕ mod 4 ≡ 0 Dobbertin class[17]

2
ϕ−1

2 − 2
ϕ−1

4 − 1 ϕ mod 2 ≡ 1 Niho 1 class [19]

2
3ϕ−1

2 − 2
ϕ−1

2 − 1 ϕ mod 2 ≡ 1 Niho 2 class [18]

Algebraic immunity. In [10], the AI of the Boolean functions derived from
the highly nonlinear power functions (see Table 6) is computed up to dimension
less than or equal to 14. These results together with our simulations for higher
dimensions indicate that most of the highly nonlinear bijective power functions
we study do not achieve the optimal AI, but they do reasonably well on this
criterion. For instance, the AI of the Boolean function derived from the inverse
power function on F216 is equal to 6 (where 8 would be the maximum attainable).
However, as shown by Courtois [12], fast algebraic attacks can be efficiently
applied on this function. In particular, there exist 4 annihilators of degree 6
which reduce to degree 4 and there exist 32 annihilators of degree 7 which reduce
to degree 3.

Implementation. We now study implementation complexity of some concrete
functions and give the nonlinearity and AI of these practical functions. Effi-
cient implementations of the inverse function in the field F2i for i ≥ 3 has been
studied by several authors, due to the fact that this function is used in the Ad-
vanced Encryption Standard. An efficient approach can be obtained by working
in composite fields as described in [42]. Based on recursion, the inverse function
is decomposed into operations in the field F22 . A minimal hardware implemen-
tation for ϕ = 16 requires 398 XOR gates and 75 AND gates, and thus consists
of about 1107.5 NAND gates as computed in [6]. It is also possible to increase
the clock frequency if necessary by pipelining the design.

Hardware implementation of exponentiation with general exponents in F2ϕ

has been well studied [1]. However, it turns out that all classes of bijective
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highly nonlinear power functions with degree greater than or equal to 6 have
a very regular pattern in their exponent, which can be exploited for a more
efficient implementation. As we can see in Table 6, all exponents e satisfy the
property that the vector e = (e0, . . . , eϕ−1) defining its binary representation,

i.e., e =
∑ϕ−1

i=0 ei2
i, contains a regular sequence consisting of ones together with

at most one bit which is separated of this sequence. The distance between two
consecutive elements in the sequence is equal to one except in the case of the
Dobbertin functions for k > 1. If the weight of this sequence is equal to a power of
2, than this property can be exploited leading to a more efficient implementation.

We will demonstrate this improved implementation on the power function
X511 in F

16
2 . The exponent 511 has binary representation 1111111112. Conse-

quently, it contains a sequence of weight 9, or also a sequence of weight 8 with
one extra digit. First, consider the normal basis {α, α2, α4, · · · , α2ϕ−1

} of F
ϕ
2 for

ϕ = 16 (a normal basis exists for every ϕ ≥ 1, see [41]). Computing the power
function in this basis will not change the properties of nonlinearity, degree, AI
and Walsh spectrum of the output functions, since power functions in different
bases are linearly equivalent. Squaring in this basis represents simply a cyclic
shift of the vector representation of that element. Consequently, computing the
power 511 of an element x ∈ F

16
2 , can be computed as follows:

x511 = (x · x2) · (x4 · x8) · (x16 · x32) · (x64 · x128) · x256

= (y · y4) · (y16 · y64) · x256 with y = x · x2

= z · z16 · x256 with z = y · y4 .
(19)

Therefore, we only need to perform some shifts together with 4 multiplications
in the normal basis of F

16
2 . These multiplications correspond with (x ·x2), (y ·y4),

and (z · z16 · x256). The hardware complexity of such multiplication depends on
the basis used to represent the field elements, or more precisely, on the number of
ones Cϕ in the multiplication matrix. It is known that Cϕ ≥ 2ϕ−1 with equality
if and only if the normal basis is optimal [37]. Note that optimal bases do not
exist for any dimension ϕ. The overall gate count of the multiplication is lower
bounded by ϕCϕ ≥ 2ϕ2−ϕ AND gates and (ϕ−1)Cϕ ≥ 2ϕ2−3ϕ+1 XOR gates
[33]. Other implementations may provide even better complexity. Also several
algorithms exist for performing normal basis multiplication in software efficiently
[39, 43]. For ϕ = 16, 17, 19 (corresponding with dimensions in Table 7), there is
no optimal basis. Therefore, the number of NAND gates for a multiplication in
normal basis is lower bounded by 1906.5 for ϕ = 16, 2161.5 for ϕ = 17, and
2719.5 for ϕ = 19 respectively.

If the vector containing the binary representation of the exponent consists of
a regular sequence with weight 2i, then the number of multiplications is equal to
i, or i + 1 if there is an additional digit defining the complete exponent. Table 7
represents the bijective highly nonlinear power function which behaves optimal
with respect to the above described implementation for dimensions ϕ between
14 and 32. We also computed the AI of the Boolean functions associated to these
power functions by means of an algorithm described in [35].

Consequently, all these functions seem to offer sufficient resistance against
the attacks described in this paper. Only to be sure of the resistance against
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Table 7. Highly Nonlinear Power Functions on F2ϕ of Degree ≥ 6

Class Exponent ϕ # multiplications AI Degree

Inverse 217 − 2 17 4 7 16
Kasami 65281 17 4 8 9
Dobbertin 511 (k = 1) 16 4 7 9
Dobbertin 37741(k = 3) 16 4 8 9
Dobbertin 51001(k = 5) 16 4 8 9
Dobbertin 21931(k = 7) 16 4 7 9
Niho Class(2) 214 + 511 19 5 ≥ 7 10

the fast algebraic attack, an extra check on the number of equations of degree
3 derived from annihilators of degree 7, the number of equations of degree 2
derived from annihilators of degree 8, and the number of equations of degree 1
derived from annihilators of degree 9 should be performed.

Moreover, we believe that the implementation of a complete S-box in the
design has several advantages. In the first place, we can increase the throughput
of the generator by outputting more bits m instead of outputting 1 bit. Therefore,
a careful study on the best bias in the affine approximation and the AI of all linear
and nonlinear combinations of m output bits need to be performed. Another
possibility, which makes the analysis harder but may increase the security, is
to destroy the linearity of the state. We could consider a filter generator with
memory by simply feeding some remaining bits from the S-box into a nonlinear
memory. Another possibility is to feedback bits of the S-box into the LFSR during
key stream generation. In both cases, it seems that the added nonlinearity may
allow us to increase the throughput. Finally, resynchronization can be performed
faster by using all bits of the S-box to destroy as rapidly as possible the linear
relations between the bits.

5 Conclusion

In this paper, we have presented a framework for the security of the classical
LFSR-based nonlinear filter and combiner generators. We have related the resis-
tance to the most important cryptanalytic attacks (distinguishing attacks, (fast)
correlation attacks and (fast) algebraic attacks) to the mathematical properties
of the LFSRs and the Boolean function. From our analysis, we are inclined to
prefer the nonlinear filter generator, with a Boolean function having as most
important properties high nonlinearity and high algebraic immunity.

These classical and very transparent designs are the only stream cipher build-
ing blocks for which a complete analysis of the linear biases, correlations and
nonlinear relations is possible. A design that has been thoroughly analyzed with
respect to the presented framework could hence be more trustworthy than a
design that is based on a new, little studied design strategy.
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We have also presented two classes of Boolean functions, the symmetric func-
tions and the power functions, that should be further analyzed as they possess
some desired properties and are at the same time easy to implement in hardware.

Further investigation of such LFSR-based schemes remains a necessity. No-
tably, the understanding of the existence of lower degree equations in fast alge-
braic attacks is missing. The aim of this paper is to be a step in the direction of
the unification of this interesting research field, in which until now too much at-
tention has been given to ad hoc attacks on some designs and not to the relations
between the mathematical properties and the attacks.
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