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1. INTRODUCTION

The National Institute for Standard and Tech-
nology (NIST) has selected the Rijndael algo-
rithm as the new Advanced Encryption Algorithm
(AES) in 2000 (FIPS Pub. 197: Specification for

the AES 2001). The AES algorithm is a block
cipher with an SPN (Substitution Permutation
Network) structure designed by Joan Daemen and
Vincent Rijmen. The use of AES is required for
the encryption of sensitive but unclassified US
government information; in 2003 the US govern-
ment has announced that it can also be used for
encrypting secret and top secret information (for
the last category key lengths of at least 192 bits
need to be used). AES is currently replacing the
old DES (Data Encryption Standard) algorithm
and its variants (3DES, DESX etc.); it is expected
that it will become soon the worldwide de facto
standard block cipher for data encryption.

Since 2000, extensive research has been performed
on AES implementations in software and hard-
ware. Very efficient software implementations ex-
ist (around 15 cycles/byte) which are suitable
for applications on PCs. Hardware implementa-

tions are especially important to facilitate high-
speed implementations for network security appli-
cations. At the other end of the spectrum, there
is a need for compact hardware implementations
for smart cards and other hand-held devices. In
these environments, speed, power consumption
and resistance against side-channel attacks are im-
portant. There is a clear need for implementations
that offer a good trade-off in this design space.

In this paper we present an FPGA implemen-
tation that has been improved to power analy-
sis resistance. Namely, we have implemented the
method of Akkar et al. (Akkar and Giraud 2001).
Our secured architecture features an increase in
gate area of less than 20%. The proposed se-
cured architecture presents an interesting option
for smart cards and other hand-held devices where
a compact and side-channel secure solution is es-
sential.

The remainder of this paper is organized as fol-
lows. In Section 2 some details on the AES al-
gorithm are discussed. Section 3 lists previous
work on hardware implementations of Rijndael.
Section 4 describes a composite field based AES



implementation. In Section 5 the security with
respect to power analysis attacks is discussed.
Section 6 gives an improvement of our implemen-
tation to a side-channel analysis resistant design.
Section 7 presents all results and compares our
unsecured and secured implementations. Section 8
concludes the paper and outlines future work.

2. THE AES ALGORITHM

Rijndael has a variable block and key length which
can be 128, 192 or 256 bits; the AES standard
includes only block lengths of 128 bits. In this
implementation we focus on the version of 128-
bit key version of AES which has 10 rounds. Each
round and the initial stage require in this case a
128-bit round key. In total 11 sets of round keys
are generated from the secret key by using the S-
box. The input data is arranged as a table i.e.,

a matrix of bytes. The round transformation con-
sists of four different transformations: ByteSub,
ShiftRow, MixColumn and AddRoundKey. They
are performed in this order with the exception of
final round which is slightly different. All trans-
formations are based on byte-oriented arithmetic
and AddRoundKey is a bitwise XOR operation.
The transformations operate on the intermediate
result, which is called the State. The ByteSub

transformation is a non-linear byte substitution
also called S-box (substitution table), operating
on bytes independently. The S-box is invertible
and is constructed by the composition of the fol-
lowing two transformations:

(1) Inversion in the GF (28) field, modulo the
irreducible polynomial m(x) = x8+x4+x3+
x + 1.

(2) Affine transformation defined with: Y =
AX−1 + b, where A is a 8x8 fixed matrix and
b is a 8x1 vector-matrix.

Further details on the AES algorithm can be
found in (Daemen and Rijmen 2001, Daemen and
Rijmen 2002).

3. PREVIOUS WORK

Many hardware architectures for Rijndael were
proposed as either ASIC (Kuo and Verbauwhede
2001, Lu and Tseng 2002, Verbauwhede et al.

2003) or FPGA implementations (Alam et al.

2002, Chodowiec and Gaj 2003, Fischer and
Drutarovský 2001, Gaj and Chodowiec 2001,
McLoone and McCanny 2001, Standaert et al.

2003). Most of the known implementations, par-
ticularly the early ones, were quite simple and not
small enough as they did not exploit composite
field arithmetic. Among those who tried to pro-
duce a really small circuit we mention the work of
Satoh et al. (Satoh et al. 2001) and Wolkerstorfer
et al. (Wolkerstorfer et al. 2002). In (Rudra et

al. 2001) the use of the composite field GF ((24)
2
)

was also proposed but no hardware implementa-
tion was given.

Here we use the composite field GF ((24)
2
), which

was also the case for the work of Wolkerstorfer et
al. (Wolkerstorfer et al. 2002) but with another
representation. Also, we have implemented the
masking as proposed by Akkar et al. (Akkar and
Giraud 2001) in order to have a compact solution
resistant against side-channel attacks.

4. COMPOSITE FIELD IMPLEMENTATION

When discussing the efficiency of a hardware im-
plementation of AES, an important role is played
by the way MixColumn is implemented. However,
we found the impact of the S-box design more
substantial as inversion is the most expensive
operation in hardware. Therefore, the key to a
compact AES implementation is the reduction of
the circuit size of the S-box. As already observed
by many researchers, there exist different ways
to implement the S-box. We make our division
with respect to the field in which the inversion is
computed and then related to the way in which
the inversion is done. The inversion is computed
either in the main field i.e. in GF (28) or in some of
the subfields (GF (22) or GF (24)). Here we chose
for inversion in GF (24) in the form of a table
look-up. This choice was important in order to
facilitate our secured version i.e., a masked S-box
implementation which is resistant to a first-order
DPA attack.

4.1 The Field GF ((24)
2
)

From finite field theory it is known that there
exists a field GF (pk) of size pk, for any prime
p and for any positive integer k. Moreover, every
finite field has this form. Let GF (q) be a finite field
of characteristic p (that is the smallest positive
integer c such that ce = 0, where e is the unit
element). Then GF (q) can be considered as a
k-dimensional vector-space over GF (p). In this
case we call GF (q) = GF (pk) an extension field
of the field GF (p). The special case where k =
mn an extension field GF (pk) = GF ((pn)

m
) is

sometimes called a composite field (Paar 1994).

As defined in (Paar 1994) two pairs GF (24), Q(y)

and GF ((24)
2
), P (x) form a composite field if the

irreducible polynomials Q(y) and P (x) are used

to construct GF (24) from GF (2) and GF ((24)
2
)

from GF (24) respectively. In this case there ex-
ists an isomorphism δ between the fields GF (28)

and GF ((24)
2
), so δ : GF (28) → GF ((24)

2
).

The polynomials Q and P are chosen as follows:
Q(y) = y4 + y + 1 and P (x) = x2 + x + λ, where
λ ∈ GF (24). Here, we chose λ = ω14 = (1001),
where ω is a generator in GF (24). In this case an
isomorphism δ is determined by an 8x8 matrix T



i.e., we have H(x) = T · x. More precisely, for an
element x ∈ GF (28):

x′ = x−1, δ(x′) = Tx′ = δ(x−1) = (Tx)−1 .

Hence the matrices T and T−1 allow us to convert
between representations.

The calculation of the inverse is then performed in

the composite field GF ((24)
2
). For A(x) = a1x +

a0, where a1, a0 ∈ GF (24), the inverse A−1 is
calculated as:

A−1 = a1(a1
2λ + a1a0 + a0

2)
−1

x +

(a0 + a1)(a1
2λ + a1a0 + a0

2)
−1

4.2 Details of the Implementation

4.2.1. Implementation of AddRoundKey, MixCol-

umn and ShiftRow. The AddRoundKey, opera-
tion is an addition of the State and the key.
In hardware this is a simple bitwise XOR. The
number of XOR gates needed is 128. The imple-
mentation of the MixColumn operation uses the
fact that 03 = 02 + 01. A multiplication with 02
is a shift to the left followed by a reduction with
x4+1. The ShiftRow operation shifts the elements
in the State. This is just a connection of wires,
which is costless in hardware.

4.2.2. Implementation of ByteSub. The struc-
ture of our ByteSub operation is shown in Fig. 1.
The hardware blocks in this figure are explained
in the remainder of this section.
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Fig. 1. Structure of the ByteSub implementation

An element in GF (28) can be represented by
elements in GF (24). In (Rudra et al. 2001) x4+x+
1 is shown to be the most area efficient polynomial
to define the field GF (24). The generator ω of
this field is (0000)0010. The 14th power of this
element, ω14 = (0000)1001, is used to define the
irreducible polynomial of the upper field: x2 +
x + ω14. Out of 8 possible isomorphisms α is
chosen as the most area efficient (Macchetti and
Bertoni 2002, Rudra et al. 2001). This way, the
transformation matrix is given by

T =











1 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0
0 0 0 0 1 1 0 0
1 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0
0 1 1 1 0 1 0 0
0 1 0 0 1 0 0 0
0 1 1 1 1 0 1 1











.

This transformation needs 26 XOR-gates.

The inverse transformation can be obtained by
calculating the inverse of T modulo 2. It can be
combined with the affine transformation.

The multiplicative inverse in GF (28) can be cal-
culated as

B(x) = b1x + b0 =
a1x + (a1 + a0)

a0(a1 + a0) + a2

1
ω14

, (1)

where B(x) ∈ GF (28) and a1, a0, b1, b0 ∈ GF (24).
The hardware blocks needed for this operation
are 1 inversion, 3 multiplications, 2 additions,
1 squaring and 1 multiplication with ω14. To
implement the inversion in GF (24) a look-up table
is used.

An addition in GF (24) is a bitwise XOR us-
ing 4 XOR-gates. The ByteSub operation uses
a standard multiplier with Mastrovito optimiza-
tions (Mastrovito 1991). Squaring in GF (24) con-
sists of 2 XOR-gates. The multiplication with ω14

needs one XOR-gate.

4.2.3. Implementation of KeySchedule Not many
optimizations are possible for the KeySchedule

operation, hence the KeySchedule is implemented
in a straight-forward manner. This results in 136
XORs, 4 ByteSub operations and 1 free rotation.

4.2.4. Implementation of the controller A con-
troller Finite State Machine (FSM) combines all
the previously described operations to obtain the
complete AES encryption. The FSM waits in the
IDLE state for the START signal to come. The
FSM can return to the IDLE state at any time
when the RESET signal is set. After the START
signal the plaintext and the key are read from the
input registers. Next, the AddRoundKey operation
is performed with the input key. This initializa-
tion takes 2 clock cycles. After that, the regular
encryption round is performed 10 times.

One encryption round needs the following opera-
tions: 16 ByteSub, 4 MixColumn, 1 AddRoundKey, 1
ShiftRow and 1 KeySchedule block(s). To obtain
a more compact implementation only 4 ByteSub

blocks are used. In this way, the data are processed
in 8 instead of 2 clock cycles. During the first
clock cycle of each of the 4 cycles the output
of the ByteSub operation is calculated, which is
written in a register one clock cycle later. The
other 3 operations are performed in 1 clock cycle.
The 4 ByteSub blocks are used in the 7th clock
cycle to perform the first step in the KeySchedule
operation. During the 8th clock cycle the key for



the next round is calculated. The total number of
clock cycles for one encryption round is 9.

Finally, the last round is performed. This round
uses the same AddRoundKey, ByteSub and ShiftRow

blocks as the regular rounds. The final round is
executed in 9 clock cycles. The encryption ends
with writing the ciphertext to the output register
(1 clock cycle).

5. RESISTANCE AGAINST SIDE-CHANNEL
ATTACKS

In this section we address side-channel secu-
rity i.e., resistance to power analysis (Kocher
et al. 1999) and electromagnetic analysis attacks
(EMA) (Gandolfi et al. 2001, Quisquater and
Samyde 2001). These types of attacks, together
with fault-analysis based attacks (Aumüller et

al. 2002, Boneh et al. 1997, Joye et al. 1999), tim-
ing (Hachez et al. 1999, Kocher 1996) and other
physical attacks such as probing attacks (Anderson
and Kuhn 1997) are a major concern especially for
wireless applications.

One of the first to realize the possibilities of
“masking” as an efficient countermeasure was T.
Messerges (Messerges 2000). But simple additive
masking as XOR does not work for Rijndael as
ByteSub is not a completely linear transformation.
Therefore Akkar et al. proposed to use two masks,
an additive and a multiplicative mask. This en-
sures that secret data that pass through ByteSub

are always protected with a fresh mask that is
a combination of two masks. The details of this
method are explained in the following section.
This paper demonstrates that the idea of Akkar et
al. can be used in a practical hardware solution.
The need of using two masks instead of one as pro-
posed by Trichina et al. in (Trichina et al. 2002)
has been discussed in (Akkar and Goubin 2004).

6. SIDE-CHANNEL RESISTANT AES
IMPLEMENTATION

The masking applied in this implementation is
based on (Akkar and Giraud 2001, Chari et al.

1999a, Chari et al. 1999b, Coron and Goubin
2000, Golić and Tymen 2002). This method, the
Transformed Masking Method, is stated as being
safe but practically infeasible because of the big
area overhead. This section proves it is possible
to implement the Transformed Masking Method
in hardware with a limited area overhead.

6.1 Data Masking

In the masking method a random number called
the mask is XOR-ed to the plaintext. The masked
data are encrypted and afterwards the mask is
removed to restore the ciphertext. To ensure se-
curity the data must remain masked throughout
the whole encryption and the mask must be data-
independent.

The hardest part to implement the masking
method is the non-linear part of the implemen-
tation, the ByteSub block. Inside this block the
Boolean additive mask X has to be replaced tem-
porarily by a multiplicative mask Y . This Y is
generated by a random number generator. The
Transformed Masking Method protects a cryp-
tographic circuit against first-order DPA attacks
by hiding the actual values of the processed data
throughout the whole implementation. The Trans-
formed Masking Method does not protect the
circuit against second order attacks, but increases
the level of resistance against higher order attacks
(Kocher et al. 1999, Messerges 2000).

6.2 Implementation of the Masking

As explained in the previous paragraph, the hard-
est part to apply the masking is the ByteSub

block. As shown in Fig. 2 some conversions
from additive to multiplicative masks are needed.
The implementation of the Transformed Masking
Method in the ByteSub block requires 6 of these
conversions. This way, the extra cost of the mask-
ing will be 12 multipliers and 6 adders. The mul-
tipliers are standard multipliers with Mastrovito
optimizations (Akkar and Giraud 2001) and the
adders are bitwise XORs.
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Fig. 2. Structure of the secure ByteSub implemen-
tation

7. RESULTS AND COMPARISON

We implemented our unsecured and secured solu-
tions on a Xilinx XCV800-4-HQ240 FPGA. In this
section we compare both implementations. Table
1 gives the result of this comparison.

Since the stress is on designing a compact solution
that can fit on a smart card, the throughput
is of less importance because all discussed im-
plementations exceed the speed requirements for
smart card implementations. The area overhead



Table 1. Comparison of the unsecured
and the secured implementation

Impl. unsecured secured
Frequency (MHz) 33 23

Throughput (Mbit/s) 41 29
Number of CLBs 908 1113

Number of clock cycles 102 102

of the secured implementation compared to the
unsecured version is less than 20%.

8. CONCLUSIONS AND FUTURE WORK

We designed a compact FPGA implementation
of the AES algorithm. A second implementation
extends the first one with some security measures
against DPA attacks using the Transformed Mask-
ing Technique. The next step will be to make an
ASIC implementation of our secured AES solu-
tion.

REFERENCES

Akkar, M.-L. and C. Giraud (2001). An implementation

of DES and AES, secure against some attacks. In:
Proceedings of 3rd International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES)
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Akkar, M.-L. and R. Bévan L. Goubin (2004). Two power

analysis attacks against one-mask methods. In: Pro-
ceedings of Fast Software Encryption (FSE) (Bimal
Roy and Willi Meier, Eds.). Lecture Notes in Com-
puter Science. Springer-Verlag. New Delhi, India.

Alam, M., W. Badawy and G. Jullien (2002). A novel
pipelined threads architecture for aes encryption
algorithm. In: Proceedings of the IEEE Interna-

tional Conference on Application-Specific Systems,
Architectures, and Processors (ASAP) (M. Schulte,
S. Bhattacharyya, N. Burgess and R. Schreiber, Eds.).
IEEE Computer Society Press. San Jose, CA, USA.
pp. 296–302.

Anderson, R. and M. Kuhn (1997). Low cost attacks on
tamper resistant devices. In: Proceedings of 5th Inter-

national Workshop on Security Protocols (B. Chris-
tianson, B. Crispo, T. M. A. Lomas and M. Roe,
Eds.). number 1361 In: Lecture Notes in Computer
Science. Springer-Verlag. Paris, France. pp. 125–136.

Aumüller, C., P. Bier, W. Fischer, P. Hofreiter and J.-
P. Seifert (2002). Fault attacks on RSA with CRT:
Concrete results and practical countermeasures. In:
Proceedings of 4th International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES)
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