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Abstract. In the first part of this paper the decorrelation theory of
Vaudenay is analysed. It is shown that the theory behind the proposed
constructions does not guarantee security against state-of-the-art differ-
ential attacks. In the second part of this paper the proposed Decorrelated
Fast Cipher (DFC), a candidate for the Advanced Encryption Standard,
is analysed. It is argued that the cipher does not obtain provable security
against a differential attack. Also, an attack on DFC reduced to 6 rounds
is given.

1 Introduction

In [6, 7] a new theory for the construction of secret-key block ciphers is given.
The notion of decorrelation to the order d is defined. Let C be a block cipher with
block size m and C∗ be a randomly chosen permutation in the same message
space. If C has a d-wise decorrelation equal to that of C∗, then an attacker
who knows at most d− 1 pairs of plaintexts and ciphertexts cannot distinguish
between C and C∗. So, the cipher C is “secure if we use it only d−1 times” [7]. It
is further noted that a d-wise decorrelated cipher for d = 2 is secure against both
a basic linear and a basic differential attack. For the latter, this basic attack is as
follows. A priori, two values a and b are fixed. Pick two plaintexts of difference a
and get the corresponding ciphertexts. Repeat a number of times. The attack is
successful if and only if at least one ciphertext pair with difference b can be found
in a number of tries that is significantly less than 2m. Let P (a, b) = Pr(C(X ⊕
a) = C(X)⊕b) denote the probability of the differential with plaintext difference
a and ciphertext difference b, where the probability is taken over all plaintexts
X. To measure the security of the constructions against the basic differential
attack the probabilities of the differentials are averaged over all keys, denoted
E(P (a, b)). It is then argued that if E(P (a, b)) can be upper bounded sufficiently
low for all values of a and b, e.g., E(P (a, b)) ≈ 2−m, then the differential attack
will not succeed.
Also, in [7] two families of ciphers are proposed both with the above proofs

of security against the basic attacks.
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The Families of Ciphers

COCONUT: This is a family of ciphers parameterised by (p(x),m), where m is
the block size and p(x) is an irreducible polynomial of degree m in GF (2)[x]. A
COCONUT cipher is a product cipher C3 ◦ C2 ◦ C1, where C1 and C3 are “any
(possibly weak) ciphers” [7], and C2 is defined

C2(y) = Ay +B mod p(x),

where A,B and y are polynomials of degree at most m − 1 in GF (2)[x]. The
polynomials A and B are secret and act as round keys. Since the COCONUT
family has “perfect decorrelation” to the order two it is claimed that the ciphers
are secure against the linear and differential attacks.

PEANUT: This is a family of Feistel ciphers parameterised by (m, r, d, p), where
m is the block size (in bits), r is the number of rounds, d is the order of the
(partial) decorrelation, and p a prime greater than 2m/2. The round function F
takes a text string and d subkeys each of length m/2,

F (x) = g((k1 · x
d−1 + k2 · x

d−2 + . . .+ kd−1 · x+ kd mod p) mod 2m/2),

where g is any permutation on m/2 bits. The DFC is a member of this family
(cf. Section 3).
The PEANUT family does not have perfect decorrelation like the COCONUT

family. This is due to both the use of the Feistel structure and to the round
functions, which are not perfect decorrelated. The multiplications mod p and
mod 2m/2 were chosen since they allow for more efficient implementations in
software as compared to multiplication in GF (2n). The price to pay is that this
leads to only partial decorrelated functions. However for sufficiently large values
of r it is shown that the ciphers are secure against the linear and differential
attacks [7].
In the first part of the paper it is shown that the above constructions based on

the decorrelation theory do not necessarily result in ciphers secure against state-
of-the-art differential attacks. Example ciphers from both families are shown to
be weak. In the second part of this paper we analyse the Decorrelated Fast Ci-
pher (DFC), which was submitted as a candidate for the Advanced Encryption
Standard (AES). DFC is an 8-round Feistel cipher and member of the PEANUT
family. It is shown that for any fixed key, there exist very high probability differ-
entials for the round function. Also, a differential attack is given on DFC reduced
to 6 rounds.

2 Analysis of the Constructions

In this section it will be shown that the constructions in the previous section will
not resist differential attacks, thereby indicating a weakness of the decorrelation
theory [7].
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When analyzing the resistance of a cipher against differential attacks, one
often computes the probabilities of differentials over all plaintexts and all keys
[4]. (Also, one distinguishes between characteristics and differentials; we use the
latter name for both concepts.) For one particular class of iterated ciphers, the
Markov ciphers, the probabilities of r-round differentials can be computed as
the product of the probabilities of the involved r one-round differentials under
the assumption of independent round keys. Moreover, the probabilities are taken
only over all possible round keys. However, in an attack the encrypted texts are
typically encrypted under a fixed, but secret, key. To deal with this, one assumes
that the hypothesis of stochastic equivalence holds.

Hypothesis 1 (Hypothesis of stochastic equivalence [4]) For virtually all

high-probability differentials it holds for a substantial fraction of the keys that the

probability of the differential for the used key is approximately equal to the aver-

age probability of the differential, when averaged over all keys.

The main reason for the criticism of the constructions based on the decorrelation
theory, is that this hypothesis does not hold for the case of the decorrelation
modules k1x + k2 in GF(2

m) nor for multiplication modulo p modulo 2m/2 for
prime p.

It is shown in the following that the distributions of differences through the
“decorrelation modules”, k1x + k2, are very key-dependent. When considering
multiplication in the field GF(2m) with exclusive-or as the difference operation,
for any given input difference a 6= 0 and output difference b, the probability of
the differential P (a, b) (notation from previous section) for a fixed key, is either
0 or 1. To see this, let x and x+ a be two inputs to the module. The difference
in the outputs then is, k1x+ k2 + k1(x+ a) + k2 = ak1. So, although E(P (a, b))
(the average probability taken over all values of the key) can be upper bounded
sufficiently low, in an attack one fixed key is used, and differentials of probability
0 and 1 can be found and exploited.

Note that the proof of security against the basic differential attack of the
introduction is not affected by these observations. Assume that P (a, b) ≈ 2−m

for an m-bit block cipher (notation as in the introduction). If the attacker is
restricted to choose the values in the differentials before analysing the received
ciphertexts the proof of security holds. However, this is not a realistic restriction
in our opinion. If for every fixed key there are high probability differentials, an
attacker will be able to detect this in an attack and exploit it.

Consider the COCONUT family. In [7] it is shown that C will be secure
against the basic differential attack independently of the choices of the ciphers
C1 and C3. First note that COCONUT versions where C1 = C3 = id (the identity
function) have high probability differentials for any fixed key. Also, such ciphers
are easily broken using two known plaintexts. One simply solves two equations
in two unknowns and retrieves A and B. (This is also noted in [7].) However,
we argue based on the above discussion that if a COCONUT cipher is secure
against a (state-of-the-art) differential attack for a fixed key then it is because
at least one or both of C1 and C3 contribute to this security.
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In [8] Wagner cryptanalyses COCONUT’98, a member of the COCONUT
family. The attack is a differential attack, which exploits that high probability
differentials exist for both C1 and C3.
Consider next a variant of the PEANUT family of ciphers for d = 2, which

use multiplication in GF (2m/2) in the round function and let g be any affine
mapping in GF (2m/2). The reason goes along the same lines as the reasoning
of the claim for COCONUT. All differentials through the decorrelation modules
have probabilities either 0 or 1, and the same holds for differentials through the
round function, since g is affine. Consequently, since this holds for all round
functions, there are differentials of probability 0 and 1 for the whole cipher.
Consider now the PEANUT family. The multiplications mod p mod 2m/2

were chosen since they allow for more efficient implementations in software as
compared to multiplication in GF (2m). Consider constructions for d = 2 with
multiplication defined in GF(p), for prime p > 2m/2, where the Feistel round
function is

F (x) = g((k1 · x+ k2 mod p) mod 2m/2)

for any permutation g. Let first g be the identity function and let p = 2m/2 + t,
where t is small. Let the difference between two m/2-bit texts, x1 and x2, be
defined as d(x1, x2) = x1 − x2 mod p (subtraction modulo p). In the following
it is examined how such a difference distributes through F . First, note that
for randomly chosen y, where 0 ≤ y < p, it holds that (y mod p) mod 2m/2 =
y mod p with probability p1 = 2

m/2/(2m/2 + t) ≈ 1. So,

d(F (x1), F (x2)) = d(k1 · x1 + k2 mod p, k1 · x2 + k2 mod p)

with probability at least (p1)
2. But since the multiplication modulo p is linear

with respect to the defined difference, one gets that

d(F (x1), F (x2)) = k1(x1 − x2) mod p

with probability at least (p1)
2. The halves in the Feistel cipher are combined

using the exclusive-or operation, however it is also noted in [7, Th. 9] that the
proof of security for the construction remains valid if the group operation is
replaced by any other group operation. Assume therefore that the halves are
combined using addition modulo 2m/2. Let w1 and w2 be the two m/2-bit halves
from a previous round which are combined with the outputs F (x1) and F (x2)
of the current round. Assume d(w1, w2) = β. Then with probability 1/2, w1 +
F (x1) mod 2

m/2 = w1 + F (x1) in Z, thus if d(F (x1), F (x2)) = α, then

d(F (x1) + w1 mod 2
m/2, F (x2) + w2 mod 2

m/2) = α+ β

with probability 1/4.
To sum up, differences modulo p in the round functions of PEANUT dis-

tribute non-uniformly. For any fixed round key, a given difference in the inputs
to F results in differences in the outputs of F with very high probabilities. Above
it was assumed that g was the identity function. The point which is made here is
that if members of the PEANUT family are secure against differential attacks,
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then it is because g resists the differential attacks, and not because of the decor-
relation module by themselves. In the next section a particular member of the
PEANUT family is analysed, where the function g is not the identity function.
Note that the high probability differentials described in this section are key-

dependent and therefore unknown to an attacker. However, the fact that the key
is fixed in an attack means, that the high probability differentials will occur.
This can be exploited in a standard attack, e.g., if the attacker guesses the first-
round key and/or the last-round key, the keys which produce high probability
differentials for the reduced cipher will be good candidates for the correct value
of the key(s). Furthermore, also differentials with probability significantly below
2−m can be used in a differential attack. This is illustrated by the attack we
present in Section 5.

3 The Decorrelated Fast Cipher

The Decorrelated Fast Cipher (DFC) [2] has been submitted as a candidate for
the AES encryption standard [5]. DFC is a member of the PEANUT family,
described above. In the following a more precise definition of the DFC is given.
For a complete description of DFC the reader is referred to [2].

3.1 General Structure

DFC is a block cipher with the classical Feistel structure. It uses 8 rounds to
transform a 128-bit plaintext block into a 128-bit ciphertext block, under the
influence of a key that can have a length up to 256 bits. The user key is expanded
to 8 128-bit round keys Ki. Every round key is split into two 64-bit halves,
denoted Ai and Bi. In every round, the round function uses the right half of the
text input and the two 64-bit round key halves to produce a 64-bit output. This
output is exored with the left half of the text input. Subsequently, both halves
are swapped, except in the last round.

3.2 The Round Function

Let X denote the 64-bit text input. First a modular multiplication is performed,
followed by an additional reduction.

Z =
(

Ai ·X +Bi mod (2
64 + 13)

)

mod 264 (1)

Subsequently, the ‘confusion permutation’ is applied to Z: the value is split into
two 32-bit halves, denoted Zl and Zr. Zl is exored with a constant KC. Zr is
exored with a table entry that is determined by the 6 least significant bits of
the original Zl. Both halves are swapped, and the result is added with a 64-bit
constant KD.

Y = ((Zr ⊕RT [Zl mod 64])¿ 32) + (Zl ⊕KC) +KD mod 264

The result Y is the output of the round function.
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3.3 The Key Scheduling

The key scheduling first pads the user key with a constant string until a 256-bit
string K is obtained. Subsequently, K is divided into two 128-bit parts K1 and
K2. The keys K1 and K2 define each an invertible transformation, denoted E1()
and E2() respectively. Let RKO denote a string of 128 zero bits. Then the round
keys of DFC are defined as follows.

RKi = E1(RKi−1) if i is odd (2)

RKi = E2(RKi−1) if i is even (3)

4 The Distribution of Differences in DFC

First note that since DFC is a member of the PEANUT family, versions of DFC
which use only the decorrelation modules in the round function have very high
probability differentials. However, the round function of DFC is more than that.
To measure the distribution of differences through the round function of DFC
we first consider a simplified version. First change all exors to additions modulo
264 and remove the nonlinear S-box RT . This version is hereafter called DFC’.
The swapping of the 32-bit halves inside the F -function is retained. Note that
the proof of security for DFC’ is the same as for DFC. Consider one round of
DFC’. Define the difference of two 64-bit texts as the subtraction modulo p. The
following test was implemented. Randomly choose a difference (αL, αR), where
both α’s are 64 bits, in the inputs to one round. Randomly choose a pair w1, w2

of texts with difference αL in the left halves. Randomly choose a pair of round
keys. For n random choices of x1 compute the differences of the outputs y1 and
y2 of the function F for inputs x1 and x2 = (x1 − αR) mod p. Compute and
store the differences of y1 +w1 mod 2

64 and y2 +w2 mod 2
64. Since modulo 264

operations used to combine the halves in DFC’ are not completely compatible
with modulo p = 264+13 operations, differentials are examined for the addition
of the Feistel cipher halves in addition to the round function F .
It is infeasible to do tests for all 264 inputs, but as we will see, this is not nec-

essary in order to determine the distribution of the differences. In 10 tests with
n = 10, 000 input pairs, the number of possible differences in the outputs and
the probabilities of the highest one-round differential were recorded. The 10,000
pairs of inputs lead to only an average of 13.6 possible output differences. The
average probability of the best one-round differential was 3/8. In similar tests
with 1,000,000 pairs, the average number of possible output differences was 14.0
still with an average probability of 3/8. Thus it can be expected that the corre-
sponding numbers for all possible inputs are close to these estimates. Note also,
these tests were performed for one randomly chosen input difference, thus, by
considering many (all) possible input differences higher probability differentials
can be expected.
Thus, despite the fact that the round function is almost perfectly decorre-

lated, very high probability differentials exist for any fixed key.
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Table 1. Results of the experiments on simplified versions of DFC. Probabilities of
best differentials for a randomly chosen input difference in 10 tests with randomly
chosen keys. (*) Average in 10 tests of best differential for 100 randomly chosen input
differences.

max. probability # output diff.

DFC’ 3/8 14
DFC” 1/128 808
DFC” (*) 0.37 370

Consider next a version of DFC where all exors are replaced by additions
modulo 264, but where RT is unchanged, hereafter called DFC”. Note that the
proof of security for DFC” is the same as for DFC.

In 10 tests similar to the above with n = 10, 000 input pairs, the number of
possible differences in the outputs was an average of 715 and the probabilities
of the highest one-round differential were 1/100 on the average. In similar tests
with 1,000,000 pairs, the average number of possible output differences was 808
with an average probability of 1/128. This is no surprise, since when the 6 bits
input to RT in a differential are different, the outputs of the round will look
random in one half. Since these 6 bits are equal with probability 1/64, these
results are in correspondence with the test results on DFC’. Moreover, for a
fixed key there are input differences such that the 6 bits input to RT are equal
in more than the average case, and the probability of the differential will be
higher. To test this phenomenon, we implemented some further tests. In 10 tests
a randomly chosen key was used. In each tests for each of 100 randomly chosen
input differences, 100,000 input pairs were generated and the output differences
recorded. The probabilities of the best such differentials for the 10 keys ranged
from 1/22 to 3/5 with an average of 0.37 and 370 possible output differences.
Table 1 summarizes the results of the experiments.

Since the only difference between the round functions of DFC” and DFC

is the use of three additions mod 264 instead of three exors, it has been clearly

demonstrated that if DFC for a fixed key is secure against differential attacks it is

because of the use of mixed group operations and not because of the decorrelation

modules.

Estimating the uniformity of differences and computing the probabilities of
differentials are much harder for real DFC. To get an indication of such results, a
version of DFC with 32-bit blocks was implemented, hereafter denoted DFC32.
The round function takes as input a 16-bit block, uses multiplication modulo
the prime p = 216 + 3 followed by a reduction modulo 216. The RT-table has
16 entries (the size of the table is chosen as the size of the inputs (in bits) to
the round function, in the spirit of DFC) with randomly chosen values, and the
constants KC and KD were chosen at random.

In 100 tests, the number of possible differences in the outputs and the prob-
abilities of the highest one-round differential were recorded for one randomly
chosen input difference and for all 216 inputs.
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Table 2. Results of the experiments on a scaled-down version of DFC. Probabilities
of best differentials for a randomly chosen input difference in 100 tests with randomly
chosen keys. (*) Average in 100 tests of best differential for 100 randomly chosen input
differences.

max. probability # output diff.

DFC32 1/397 6700
DFC32 (*) 1/91 1750

The 216 pairs of inputs lead to an average of 6700 possible output differences.
The average probability of the best one-round differential was 1/397 (and 1/21
in the best case). By considering 100 input differences for every chosen key, the
number of possible output differences dropped to 1750, and the average best
probability increased to 1/91 (and 1/18 in the best case).
Table 2 summarizes the results of the experiments.
It can be argued that the RT-table chosen in this scaled-down version of DFC

is too big relatively to DFC. Repeating the last test above, this time with a 2-bit
RT-table, the number of possible output differences dropped to 1051, and the
average best probability increased to 1/49 (and 1/7 in the best case).
Based on the tests conducted here, it is hard to estimate the exact effect

for the proposed DFC (without any modifications). However, the tests strongly
indicate that the round function of DFC distributes differences modulo p in a
very non-uniform way, and that high probability differentials exist.
Summarizing, it was demonstrated that if the DFC is secure against the

differential attacks it will be because of the elements that are independent of the
proof of security. Also, it was clearly indicated that high probability differentials
will exist for DFC for any fixed key.

5 A Differential Attack

The high probability differentials of the previous section might lead to a straight-
forward differential attack on DFC. However, the large block size of DFC makes
it hard to perform such tests. It is left as an open problem for the time being.
In the following we present an attack on DFC when reduced to six of the

proposed eight rounds. The attack does not depend directly on the findings
in the previous version, but these are incorporated in a possible improvement
described later. The attack uses a differential with S/N-ratio < 1. As explained
in [1] and [3], this type of differentials can be used in a similar way as ‘ordinary’
differentials with S/N-ratio > 1 to mount a differential attack. Before the attack
is explained, we mention a property of the DFC key schedule that is useful in
the attack.

5.1 A Key Scheduling Weakness

The first round key is defined as RK1 = E1(RK0). The string RK0 is constant
and the transformation E1() depends on one half of the key bits. The consequence
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is that the entropy of the first round key is at most one half of the entropy of
the user key, e.g., for a 128-bit user key, the first round key has only an entropy
of 64 bits. This property makes it easier for an attacker to bypass the first round
by guessing the key.

5.2 The F -function is Almost Bijective

The F -function of DFC is almost bijective. The only non-invertible part of the
F -function is the reduction modulo 264 after the modular multiplication in (1).
Let x1, x2 be two different inputs and let yi = A ·xi+B, where A and B are the
secret keys. The inputs x1, x2 will be mapped to the same output if and only if

(y1 mod (2
64 + 13)) mod 264 = (y2 mod (2

64 + 13)) mod 264.

If x1 6= x2, the equality can only hold if either y1 mod (2
64+13) ∈ {0, 1, . . . , 12}

and y2 = y1 + 2
64, or y1 mod (2

64 + 13) ∈ {264, 264 + 1, . . . , 264 + 12} and
y2 = y1 − 2

64. For fixed values of A and B, there can be at most 26 tuples
(x1, x2) with 0 ≤ x1, x2 < 264, that result in equal output values.
It follows that for any key K = (A,B)

∑

α6=0

P (α→ 0|K) ≤ 26 · 2−64.

Because for every value of α, P (α → 0|K) is a multiple of 2−64, there are for
every round key value K at most 26 α’s such that the probability is larger than
zero.

5.3 A 5-Round Differential with Low Probability

Consider the 5-round differential with both input difference and output difference
equal to (α, 0), where α is an arbitrary value, different from zero. (We use the
bitwise exor as difference operation.) In this section we will try to give an upper
bound for the probability of this differential. In order for our attack to work,
this upper bound should be significantly smaller than 2−64.
On Figure 1 it is easy to see that a pair that follows the differential, will have

a difference of (0, α) at the input of the second round, and (α, 0) at the output of
the fourth round. In the second round, the input difference to the F -function will
lead to a certain output difference, denoted β. Similarly, reasoning backwards,
it follows that in the fourth round, the difference at the input of the F -function
equals α. The output difference is denoted γ. It follows that the third round
will have input difference (α, β) and output difference (γ, α). This requires that
β ≡ γ and that the output difference of the F -function in the third round is zero
and the input difference β.
Note that the differential does not specify any particular value of β. The

probability of the differential is thus given by the sum over all β-values of the
probabilities of the characteristics.

Pdif =
∑

β

Pchar(β)
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Fig. 1. A 5-round differential with very low probability.

We will approximate the probabilities of the characteristics by the product of
the probabilities of the composing one-round characteristics. This may in fact
cause inaccuracies, but it is a common assumption. The exact probability of the
differential is not very important for our attack, and the experimental results
confirm our analysis. We feel that a more exact calculation of the probability
would needlessly complicate the analysis.
As already explained in Section 2 and Section 4, the probability of a one

round characteristic depends heavily on the value of the round key.

Pdif ≈
∑

β

P (α→ β | K = K2)P (β → 0 | K = K3)P (α→ β | K = K4) (4)

When calculating the probability of a characteristic, a distinction is made
between the cases β = 0 and β 6= 0. If β = 0

Pchar(β=0) = P (α→ 0 | K = K2)P (α→ 0 | K = K4)

Under the assumption of independent rounds, it follows from Section 5.2 that
Pchar(β=0) ≤ (26/2

64)2 < 2−118.

If β 6= 0

Pchar(β)
= P (α→ β | K = K2)P (β → 0 | K = K3)P (α→ β | K = K4).
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It follows from Section 5.2 that for every value of K3 there are at most 26
β-values such that the probability is larger than zero. Also, from Section 4 it
follows that for every value of the round key, there are (α, β) tuples such that
P (α → β) is relatively “high”. Let us denote this probability by p1. For most
other values of (α, β), the probability is much lower than p1, possibly zero. We
denote this probability by p2. The values of (α, β) which correspond to high and
low probabilities depend on the value of the round keys. The worst scenario for
the attack would be that the round key values are selected such that there are
values of α and β with high P (α→ β) in both the second and the fourth round,
and where also P (β → 0) is nonzero in the third round. The attack uses many
different α values, therefore it can be expected that some of the α values will
give a high P (α → β) in the second or the fourth round, where β has nonzero
P (β → 0) in the third round. However, it can be argued that for almost all
keys it is highly unlikely that there will exist an α such that P (α → β) is high
in the second and the fourth round for a suitable β. For almost all keys, the
probability of the differential will be at most 26 · 2−64 · p1 · p2 for all values of α.
It is confirmed by the experiments performed, that this probability is sufficiently
low for the attack to work.

5.4 The Actual Attack

The attack on 6 rounds works in almost the same way as the attack on 6-round
DEAL [3]. The main differences are the following:

1. The probability of the 5-round differential is not 0, but very low.
2. The attack uses chosen ciphertexts instead of chosen plaintexts. This reason
for this is that if the user key length is less than 256 bits, the first-round key
of DFC has a lower entropy than the last-round key. It is therefore easier to
recover.

The attack starts as follows. Choose 264 ciphertexts with a fixed right half and
a variable left half, say Ci = (Xi, R). Obtain the corresponding plaintexts, say
Pi = (Yi, Zi). Compute Xi ⊕ Zi and find matches Xi ⊕ Zi = Xj ⊕ Zj . About
263 matches can be expected. Let α = Xi ⊕ Xj = Zi ⊕ Zj . Guess a value
for the first-round key. For all the matching pairs, encrypt the plaintexts one
round. If the difference after the first round is (α, 0), the guessed key value is
wrong with high probability. For the correct value of the first-round key, in some
rare cases the probability of getting right pairs might be relatively high, but as
explained earlier in by far the most cases this ratio is very low. Assuming that a
wrong key produces uniformly distributed output differences, the difference (α, 0)
will occur with probability 2−64 for each analysed pair. Thus, 2−64 · 263 = 0.5
good pairs can be expected. Discarding all the key guesses that produce a good
pair will eliminate about half of the wrong key values. Repeating this attack
64 times eliminates almost all the wrong key values. The attack requires about
64·264 = 270 chosen ciphertexts and (264+263+. . .+2+1)·264 ≈ 2129 evaluations
of the round function, which is roughly equivalent to 2126 encryptions.
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Table 3. Experimental results for DFC32, reduced to 6 rounds. All results are averages
over 10 tests. For every structure, 216 ciphertexts with a fixed right half are decrypted.
The last column lists the average number of surviving wrong key guesses after all the
runs. (The attack starts with 216 possible values for the key.)

# structures # wrong keys remaining

16 22.4
17 14.3
18 8.1
19 4.3
20 2.1
21 1.2

Table 4. Adjusted chosen text requirements and work load of the attack on 6 rounds
of DFC.

key length # chosen texts work load

128 271 2127

192 1.5 · 271 2158

256 272 2190

5.5 Implementation

We implemented this attack on DFC32, a reduced version of DFC that operates
on blocks of 32 bits. All constants and tables were reduced accordingly and the
prime 216 + 3 was chosen for the modular multiplication. Because of the key
scheduling weakness (cf. Section 5.1), the first-round key of DFC32 has 16 bits
entropy. The results of the previous section predict that 16 structures of 216

texts should allow to determine uniquely the 16-bit key. The results of 10 tests
are given in Table 3.

After repeating the basic attack sufficiently many times only a few candidates
are left for the secret key. The correct value of the secret key never resulted in
the 5-round differential as described above, which justifies the approximations
made in Section 5.3. The experiments suggest that in practice a little more cho-
sen plaintexts are required then predicted by the theory, because we get less
good pairs than expected for the wrong key guesses. The net result is that every
structure eliminates only 39% of the remaining key candidates, instead of the
expected 50%. We therefore have to adjust our estimates for the plaintext re-
quirements and the work load of our attack on 6 rounds of DFC. Increasing the
plaintext requirements and the work load with a factor two is more than suffi-
cient. The results are given in Table 4, together with the estimates for attacks
on DFC with other key lengths. The estimates for the work load use one encryp-
tion as the unit operation. The estimate for 256 bit keys is pessimistic, because
in that case it is easy to speed up significantly the round function evaluations
since the modular multiplication does not have to be repeated for every new key
guess.
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5.6 A Possible Improvement

In this section a possible improvement of the attack is outlined which may reduce
the complexity. The attack uses the observations in Section 4.
Consider again the 5-round differential of the previous section, but allow

now the nonzero half of the difference in the last round to be different from
the nonzero half of the difference in the first round. The differential starts with
a difference (α, 0). After the first round, the difference is (0, α). In the second
round, the inputs to F with difference α leads to an output difference β. At
the output of the 5th round, a difference (δ, 0) is required. In the fourth round
the inputs to F with difference δ leads to an output difference γ. It follows that
β ≡ γ. The attack works as follows. Choose a structure of ciphertexts with equal
right halves. For all values of the first-round key(s) K1, find the plaintext pairs
which yield equal inputs to F in the second round. For each such pair, one knows
the input differences to F in the second and fourth rounds, and that the two
output differences of F in the two rounds are equal. Since the number of output
differences of F are limited for any given difference in the inputs, cf. Section 4,
this gives an attacker information about the relation between one half of each of
the keys K2 and K4. Note that the distribution of differences through F depends
mostly on one half of the round keys. Repeat this procedure a number of times
for each value of the first-round key. The value of the first-round key which gives
rise to a frequent relation between the keys K2 and K4 is expected to be the
correct value. It remains an open problem to what extent this variant of the
attack will reduce the complexity of the previous attack.

6 Conclusions

We showed that the constructions of ciphers in the COCONUT and PEANUT
families are weak against differential attacks. The main observation is that for a
fixed key (which is the scenario of an attack) high probability differentials can be
found. We analysed one particular member of the PEANUT-family: the DFC.
It was shown that variants of DFC with only small modifications and with the
same proof of security as the original, are vulnerable to a differential attack. For
the proposed DFC it was indicated that differentials with high probabilities exist
for the round function. Also, an attack, not directly related to these findings,
on the proposed DFC reduced to six of eight rounds was given. Although the
attack requires a large running time it is believed that the outlined possible
improvement will be faster.
The results in this paper do not contradict the theory of decorrelation [7].

More specifically, and in accordance with [7], ciphers which are d-wise decorre-
lated are provably secure against the following attacks.

1. Any chosen plaintext attack using at most d− 1 plaintexts.
2. If d ≥ 2, the basic differential attack, where an attacker is restricted to
choose the values in the differentials before the attack.

3. If d ≥ 2, the basic linear attack.
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The point we make is that restricting the attacker to such basic attacks does not
lead to a strong proof of security. More specifically, we showed how some more
advanced differential techniques can be used to attack decorrelated ciphers in
general and reduced versions of DFC in particular. Although the decorrelation
theory may be a valuable contribution to cryptographic research, it does not
guarantee resistance against state-of-the-art differential attacks.
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