Censorship-Resistant and Privacy-Preserving
Distributed Web Search

Michael Herrmann*, Ren Zhang*, Kai-Chun NingT, Claudia Diaz* and Bart Preneel*
*KU Leuven ESAT/COSIC, iMinds, Leuven, Belgium,
Email: firstname.lastname @esat.kuleuven.be
National Chiao Tung University, Hsinchu, Taiwan
Email: kaichun.ning@gmail.com

Abstract—The vast majority of Internet users are relying on
centralized search engine providers to conduct their web searches.
However, search results can be censored and search queries can
be recorded by these providers without the user’s knowledge.
Distributed web search engines based on peer-to-peer networks
have been proposed to mitigate these threats. In this paper we
analyze the three most popular real-world distributed web search
engines: Faroo, Seeks and Yacy, with respect to their censorship
resistance and privacy protection. We show that none of them
provides an adequate level of protection against an adversary
with modest resources. Recognizing these flaws, we identify
security properties a censorship-resistant and privacy-preserving
distributed web search engine should provide. We propose two
novel defense mechanisms called node density protocol and
webpage verification protocol to achieve censorship resistance and
show their effectiveness and feasibility with simulations. Finally,
we elaborate on how state-of-the-art defense mechanisms achieve
privacy protection in distributed web search engines.

I. INTRODUCTION

Finding the most relevant information in the World Wide
Web (WWW) is a challenging task. The sheer size of the
WWW makes this task for a normal user virtually impossible.
Therefore, search engines are among the most important and
most frequently used services of the WWW. Centralized search
engine providers, such as Google and Bing, build server farms
with massive computation and bandwidth resources in order
to analyze the structure and content of the WWW, create a
centralized index, and enable users to query this index.

In the past years significant concerns have emerged with
respect to centralized search engine providers. On one hand,
concerns about censorship have been raised because the users’
search results are opaquely created. Since a centralized search
engine has total control over its index, it also has the power
to remove/censor parts of the index or manipulate the rank-
ing. On the other hand, privacy concerns are raised because
these providers collect all search queries. This collection
of information could be used to infer sensitive information
about a user, such as income level, religious beliefs or health
conditions [1]. This information may be sold to or stolen
by unforeseeable entities, such as advertisement companies,
criminals or intelligence agencies.

As a promising alternative to centralized search engine
providers, distributed web search engines (DWSE) have been
proposed to solve censorship and privacy issues. The key idea
is to distribute the massive workload of running a search
engine to a peer-to-peer (P2P) network. This decentralized

structure promises to overcome censorship and privacy con-
cerns, because there is no central instance that is in control
of all the index data or user requests. Instead, each peer
stores a part of the index on its local machine and all peers
build together the distributed index. Similarly to the store and
retrieve functionality of P2P file-sharing networks, every peer
is able to store information on what webpages are relevant
for a given search term and to retrieve relevant URLs to a
certain search term, respectively. Additionally, these systems
are usually open source. The execution of self-compiled source
code on the user’s device provides transparency in how the
search results are obtained and ranked.

In this work we present an analysis of real-world DWSE on
their censorship resistance and privacy protection with respect
to common P2P threat models. To the best of our knowledge
there exist only three real-world DWSE: Faroo', Seeks® and
Yacy®. After investigating the designs of these systems, we find
that by deploying an eclipse attack [2] with a few malicious
nodes, an attacker can easily remove a certain topic from the
distributed index or get the list of IP addresses of the nodes
that searched for the topic. In addition, we conduct the attacks
in a real-world YaCy network that we set up in the Planet-Lab*
network. We conclude that none of the existing DWSE actually
keeps up to their promises to provide censorship resistance and
privacy protection.

Acknowledging the flaws of current DWSE, we identify
security properties for a censorship-resistant and privacy-
preserving DWSE. This contributes to the proper evaluation
of DWSE. Furthermore, we provide design recommendations
for future DWSE. Firstly, by utilizing the network topology
secured by the state-of-the-art P2P anonymous communication
systems [3], [4], we propose the node density protocol to
mitigate the eclipse attack used in censorship. Secondly, we
provide a protocol named webpage verification to remove
malicious peers performing eclipse or index poisoning attacks
[5] from the network. The protocol exploits the fact that search
results are verifiable by any node in the network and thereby
shows that censorship resistance in DWSE can be achieved
in an easier way than in, for example, file-sharing networks.
Finally, we argue that essentially, privacy protection in DWSE
is the same issue as privacy protection in P2P anonymous
communication systems.

Thttp://www.faroo.com/
2http://seeks.fr/
3http://yacy.net/en/index.html
“http://planet-lab.eu/
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The remainder of the paper is structured as follows: Sec-
tion II provides the description and evaluation of real-world
DWSE. We deploy our attacks in a real-world Yacy network
and present the result in Section III. We identify security prop-
erties of censorship-resistant and privacy-preserving DWSE in
Section IV and show how they can be achieved in Section V.
We provide simulation results to evaluate our protocols in
Section VI. We review related work in Section VII, give an
overlook on future work in Section VIII and conclude this
work in Section IX.

II. EVALUATION OF DISTRIBUTED WEB SEARCH
ENGINES

In this section we describe and evaluate the design of
Faroo, Seeks and Yacy. Peers in all three systems organize the
distributed index with reverse word index (RWI) entries, i.e.
the peers store search term — URL if a particular webpage is
relevant to a search term. Faroo is a closed source DSWE that
claims to be powered by 2.5 million peers. Although there was
little activity in the past two years in the Seeks community, a
public instance of Seeks still exists. YaCy has a very active user
and development community which provides regular updates.
We have verified with the developers of these systems that
our description is accurate. Although all three DWSE have no
central entity that is able to observe all user queries or to censor
the distributed index, none of them provides a security analysis
with respect to common P2P threat models. We outline how
all the considered DWSE are vulnerable to one or several of
the following well-known P2P attacks: The eclipse attack [2],
the index poisoning attack [5] and the route capture attack [3].

A. Threat Model

In this work we consider an attacker able to control a set
of colluding nodes inside the P2P network with a modified
client program that can launch both active and passive attacks.
The network was first established by an honest user and the
attacker does not attack the bootstrap machines. In terms of
the definitions of Raymond [6] the attacker is internal, active
and static. In line with most other works of P2P security, such
as [3] and [4], we do not consider a global attacker.

B. Faroo

Faroo implements a modified Kademlia [7] distributed
hash table (DHT). The ID of a node is generated from the
node’s MAC address and some other local information. After
a webpage is crawled, the client program generates relevant
RWI entries and computes the target ID for each entry, which
is the hash value of the search term. An entry is then stored
on 20 index nodes whose IDs are closest to the target ID.

To perform a search, the initiator of a search query com-
putes the target ID of the search term and queries the relevant
index nodes. The IP address of the initiator is sent along with
the query so that the responsible index nodes can reply in a
direct connection. Only the top 100 results are replied.

The communication is secured with two layers of encryp-
tion. The protocol layer encryption can prevent unsophisticated
passive observers from understanding the packets. RWI entries
are further encrypted with the search term as key. The client
program is obfuscated to make reverse-engineering difficult.
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Now we present a sketch of deploying an eclipse attack to
censor a keyword. Note that we assume that the client program
is successfully reverse-engineered, because generally, security
through obscurity is not accepted in the security community.
First, an attacker learns the closest honest nodes by searching
the keyword. Second, the attacker uses the client program to
compute the keyword’s ID and generate 20 node IDs closer
to the target ID than these honest nodes. Illegal node IDs
will not be spotted since there is no way for another node to
check a node’s local information. Third, the attacker deploys
20 malicious nodes with these IDs. These 20 nodes’ IPs need
to be in different /24 subnets, and no more than 5 can reside in
the same country. Now the new index nodes are all malicious
nodes. The attacker can then censor the keyword by accepting
all index requests and by replying with only a subset of all
locally stored entries. The attacker also gets the IP addresses
of search initiators, thus user privacy is breached. Moreover, it
is difficult to judge that an index node is malicious simply by
observing that a stored entry is discarded, because the entry
may not be in the top 100 results.

C. Seeks

Seeks does not have a crawler. It does not aim at re-
indexing the WWW but enables collaboration and re-ranking
via a distributed architecture. The client program displays
every search result as an aggregate from centralized search
engines designated by the user and the Seeks P2P network.

The Seeks P2P network is built on Chord [8]. Seeks utilizes
the network fundamentally differently from the approach of
YaCy and Faroo. A search query is not mapped to the relevant
RWI entries but to users who issued similar queries. Users can
also “push” entries into the network so that they will show up
in other users’ search results. Seeks implements a locality-
sensitive hash function that maps similar queries to the same
ID and thus the same group of index nodes. A user is able
to register herself at the index nodes for her search query
and to retrieve the IP addresses of other peers that issued
similar queries. This enables the users to communicate and
share interesting search results.

The goal of Seeks is in direct opposite of providing
anonymity: An attacker can get a list of peers interested in
a search term simply by issuing the query himself. In terms
of censorship resistance, while it is difficult to censor search
results from centralized search engines, Seeks does not serve
as an alternative for users seeking to mitigate the risk of
being censored by centralized search engines. Meanwhile, an
attacker can also easily deploy the eclipse attack to occupy
index nodes for a search query, therefore prevents users from
communicating with each other. An index poisoning attack of
injecting fake URLs into the network is also possible.

D. Yacy

Although there is an in-depth description of YaCy avail-
able [9] we summarize here the its design characteristics that
are important for the security evaluation in Section IIl. The
YaCy software connects by default to the public YaCy network
called freeworld. Besides, YaCy can also be configured to run
a private distributed search engine. In a Yacy network, the
address space is defined as a ring similar to that of Chord.
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Every peer maintains a global view of all peers in the network,
and therefore can directly contact every other peer. This is
achieved with the following two mechanisms. Firstly, there are
super peers called principal peers that collect and distribute
information about every peer in the network. Secondly, peers
frequently exchange information about all peers they know
about, known as peer ping protocol.

On a peer A, information of another peer B is stored in a
seed data structure. All the seeds together form A’s seedlist.
For the scope of this work, there are 5 important values in the
seed about B. The last-seen value indicates the time when A
last communicated with B. The root-mode flag is set if B’s
last peer ping was finished in less than one second. The RWI
count depicts the number of RWI entries that are stored on B.
The remote-index flag indicates whether B receives and stores
entries from other peers. If this flag is cleared, B is referred to
as Robinson peer and only contributes to the distributed index
with entries that are locally stored by itself. At last, optionally,
a few keywords may be listed in a Robinson peer’s search tag
field, indicating some search terms that have related entries in
this peer. Please note that the last four values are reported by
the peer itself, or may be overwritten by information provided
by other peers.

A YaCy peer is able to choose its position in the network
freely. For every network join, a peer first contacts the principal
peers for their seedlists, and then starts a peer ping with
the 20 youngest peers with respect to their last-seen values.
Subsequently, the peer periodically engages in peer pings with
the three oldest peers in the network.

The main purpose of YaCy is to store and retrieve in-
formation from the distributed web index. To this end, ev-
ery peer maintains two databases: a self-implemented RWI
database with a well-tried storage/retrieval mechanism and
a Solr’ database with a rather experimental storage/retrieval
mechanism. Both databases store entries of the form similar
to Faroo’s. Whenever a peer crawls a webpage it stores the
RWI entry for every word in the webpage, i.e. every search
term, at the designated address. The address is a 63-bit string
with the 4 most significant bits determined by the hash of
the URL and the others determined by the hash of the word.
The crawling peer stores an entry at the 3 closest successor
peers according to the address. Furthermore, both the crawling
peer and the 3 index peers store the entry in their local Solr
databases.

When a peer wants to retrieve search results from the
YaCy network, it creates a candidate set for sending RWI and
another one for sending Solr search requests. The candidate
sets depend on the number of terms in the user’s search query.
For this work it suffices to outline the process for search
queries with one word. As a result of the storage mechanism,
all entries for the same search term are found on 2* = 16
positions in the network, because the storage addresses for
the same search term only differ in the most significant 4
bits. These 16 positions are called the vertical positions for
the search term. The part of address space that shares the
same 4 most significant bits are called a vertical partition.
For retrieving entries from the RWI database, which we refer
to as Yacy search, the candidate set consists of the 2 closest

Shttp://lucene.apache.org/solr/
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successor peers to every vertical position. Additionally, each of
the 5 most heavily loaded peers, i.e. the peers with the highest
RWI count in the network, is added to the candidate set with
probability 80%. To construct the Solr candidate set for the
Solr search, the following peers may be added: 20 random
peers that have the root-mode flag set; all Robinson peers that
have a search tag that matches the user’s search query; and
finally up to 25% of all Robinson peers in the network. After
the two candidate sets are created, the search initiator contacts
every peer in the sets and transmits the hash of the search term
along with its requests. The receivers then inspect their local
databases and reply with relevant search results, if available.

The fact that each peer can choose its own ID and report
for themselves values in the seed enables an attacker to easily
deploy two attacks to fill the candidate sets: An eclipse attack
to occupy successor positions of target IDs, and a route capture
attack to bias the seedlists of honest peers and redirect search
requests to its malicious peers. The attacker can therefore
censor the related entries or learn the IP addresses of users
searching for a certain keyword or URL to break the users’
privacy.

III. ATTACKS ON YACY

In this section we conduct attacks on Yacy, one of the real-
world DWSE. Yacy was selected because Faroo is a closed
source project, and Seeks does not have as solid a user base
and mature source code as Yacy does. We show that YaCy
provides little censorship resistance and no privacy protection
in the presence of malicious peers in the network.

A. Setup the Experiment Environment

We set up our private YaCy network with Planet-Lab nodes.
Note that our network has the same security properties as
freeworld, since honest peers are still using the unmodified
Yacy client software. Furthermore, as we will see below, the
attacks we deployed are scalable to the size of freeworld. The
test network consists of 149 Planet-Lab nodes and one machine
from our lab in the role of the principal and bootstrap peer.
Among the 149 peers, we added 3 peers after every vertical
position of the RWI entry of Jediism. Then we added 61
peers in an ordinary, standard-user-like configuration. Finally,
we added 40 peers with various configurations that allow the
investigation of every possible YaCy peer type. In particular
we added 5 peers with highest RWI count, 25 peers with
root-mode flag set, 9 peers with cleared remote-index flag
(Robinson peers), and 1 peer with cleared remote-index flag
and a search tag ‘Jediism’.

We did not launch any attacks in freeworld in order
to protect the privacy of its users. Only for parts of the
investigations in Section III-D we conducted a privacy non-
invasive experiment in the freeworld network in order to learn
its churn rate. Furthermore, we obtained the permission of the
YaCy community in advance.

B. Verification of the Candidate Sets

It is crucial for an attacker who wants to monitor and
censor search requests to understand how the candidate sets are
constructed. Therefore we conduct an experiment to examine
whether our understanding of the Yacy source code is correct.
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TABLE I: Percentage of received search requests in our
experimental network.

YaCy search requests

Two closest successors to vertical position: 100%

Third closest successor to vertical position: 0%

Mean = 75.5%
StdDev = 4.79%
All others: | 0%

Peers with highest RWI count:

Solr search requests:

Mean = 79.23%
StdDev = 5.22%
Robinson peer with tag Jediism: 100%

Mean = 26.07%
StdDev = 3.32%
All others: | 0%

Peers in root-mode:

9 Robinson peers:

We made 3 peers search the term Jediism for 50 times with
different time intervals (200s, 250s, 300s). The results of our
experiment are shown in Table I. It can be seen that they match
the description in Section II-D.

C. Monitoring and Censoring Keywords in Yacy search

For the sake of brevity we only elaborate on search queries
that contain one search term. Note that the attacker’s cost
increases linearly with the number of search terms.

Recall from our experiment in Section III-B that controlling
two closest successors at each of the 16 vertical positions and
5 most heavily loaded peers is adequate for an attacker to
receive all search requests and is thus able to censor the search
request. Acquiring a desired ID is possible because a peer is
free to choose its ID. Furthermore, since the RWI count is
reported by the peer itself, a malicious peer is able to report
the maximum value of 253 — 1. Please note that a malicious
peer that is put as closest successor to a vertical position can
also report to have the highest RWI count. Therefore only 32
peers are necessary for censoring a search term. Monitoring
is successful if the attacker controls one of these peers. Note
that the number of malicious peers is the same regardless of
the size of the network.

The attacker still needs to determine the search term related
to each search request. This is because the peers only receive
the hash of the search term, and most likely only a subset of
the requests they received are related to the ones to censor.
Therefore, a malicious peer extracts and visits all URLs in
its local databases and computes the hash of every word
of the respective webpage. Although this may include the
computation of thousands of hashes, this attack is still feasible.
Firstly the computation of a hash is cheap and secondly the
result of a hash can be reused when stored in a lookup table.

To monitor a search term, the attacker logs every search
initiator’s IP address. For censoring a search term the malicious
peers send either an empty or filtered reply to a search request.
In our experiment, the attacker has an 100% success rate.

D. Monitoring and Censoring URLs in Yacy search

In this attack, the attacker’s goal is to learn the users
searching for information that can be found on a particular
webpage or to censor content of the webpage. An approach
similar to the one in the previous attack does not work, because
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Fig. 1: Illustration of an attacker blocking all the incoming
requests to honest peers in one vertical partition.

there are potentially thousands of words on a webpage stored
as different RWI entries in the distributed index, and having
32 malicious peers for each keyword is not feasible. As we
will show in the following, monitoring and censoring URLs is
possible in YaCy with a variant of the eclipse attack.

The attack exploits the fact that YaCy stores all RWI entries
that belong to the same URL in the same region of the address
space. In particular, the first 4 bits of an RWI entry’s ID is
given by the hash of the URL. Consequently, all RWI entries
regarding a webpage share the same 4 bits and are thus stored
in the same vertical partition. Therefore, an attacker can place
malicious peers as closest successors to every target ID of the
attacked URL, i.e. for every ID that results from the 4 bits of
the URL and the 59 bits of every word on the URL. Please
note that the adversary may be able to leave some target IDs
out if there are no honest peers between the regions of two
consecutive target IDs. We illustrate this blocking in Figure 1.

A complete overview of honest peers in the partition can
lower the attacker’s cost. Updating seedlist from principal
peers is not enough since newly joined peers may appear with
delay on the seedlist. To mitigate this delay, the attacker fre-
quently pings an amount of youngest peers from the principal
peers’ seedlists and learns the peers they know. The attacker
thereby exploits the behavior of newly joined peers that they
first send pings to the 20 youngest peers in the network.

In Section III-C we have shown that placing two peers
in front of another peer successfully blocks all requests to
this third peer, and we therefore do not present further data
on the blocking in a vertical partition. Here, we only present
experimental data that shows the effectiveness for the attacker
to ping other peers to obtain a more accurate snapshot of the
network. In particular, we queried the principal peers of the
freeworld in the frequency they publish a new seedlist (30
seconds). Subsequently, we ping the 50 peers that have the
most recent last-seen tags in order to obtain their seedlists as
well. With this strategy we were able to learn from 1% to 6%
more peers than with the public seedlists alone.

Now the attacker can place two malicious peers at two
consecutive positions after some IDs of the attacked URL
according to the distribution of honest peers in the desired
vertical partition. To continuously monitor/censor all search
requests, the attacker may need to adjust the placement of its
peers according to the honest peers in the partition.

E. Monitoring and Censoring Solr Search

For monitoring the Solr search the attacker needs to ensure
that at least one of its malicious peers is added to the Solr
search candidate set. The easiest option is to add one Robinson
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peer with a matching search tag, because these are always
added to the candidate set. However, to completely censor a
Solr search request, the attacker needs to control all peers in
the candidate set. While this is a hard task, the attacker can
still significantly increase its success chances and occupy a
large proportion of peers in the candidate set with a variant of
the route capture attack as follows.

Since a peer A sets its root-mode flag itself based on the
communication with other peers, an attacker can guarantee that
only malicious peers in the network have the root-mode flag
set: When receiving a peer ping from A, a malicious peer B
delays the request by more than 1 second so that A clears its
own root-mode flag; afterwards, B transfers a modified version
of its seedlist to A with root-mode flags of malicious peers
enabled and other peers disabled. Also in this seedlist, the last-
seen values are modified such that the malicious peers have
the oldest values. Thus we can make sure that honest peers
in the network eventually only send peer pings to malicious
peers, because they appear to have the oldest last-seen values.

The time required by this attack depends on the ratio of
malicious peers in the network. We conducted an experiment
in our test network of 150 peers and a ratio of 6.7%, 10% and
20% malicious peers. The results are 42, 36 and 28 minutes,
respectively. Although the attack can still be performed with
fewer peers, at least 3 malicious peers are necessary. This is
because an honest peer sends peer ping messages to 3 peers
simultaneously every round.

To control the random subset of Robinson peers is most
difficult. The attacker cannot deceive an honest peer B with a
modified seedlist by saying a peer C' is not a Robinson peer.
This is because B may try to store RWI entries on C', and once
the request is rejected, B learns that C' is a Robinson peer. We
note however that an attacker can increase its chances to censor
a search term by spreading this false information. The attacker
could also deploy a DoS attack to remove Robinson peers
from the network. Finally we note that the adversary’s censor
attack could still be successful although an honest Robinson
peer is added to the candidate set. This is because there is no
guarantee that this Robinson peer actually stores information
the adversary aims to censor.

IV. SECURITY PROPERTIES OF DISTRIBUTED WEB
SEARCH ENGINES

As we have seen in the previous section, none of the real-
world DWSE provides censorship resistance or privacy with
respect to our threat model in Section II-A. As the first step
to design censorship-resistant and privacy-preserving DWSE,
we enumerate here what properties such a DWSE needs to
provide. To the best of our knowledge, no other work has
listed such properties.

For censorship resistance we take possible real-world
threats as a starting point. From our perspective, common
censorship practices can be classified into three categories:
(1) the adversary may wish to remove a subset of search
results of a search query so that the remaining results are in
his favour; (2) the adversary may have the goal to remove
an entire topic from the distributed index; (3) the adversary
may want to simply censor any search result but does not care
which ones exactly, in order to decrease the functionality of
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the service. The third situation happens when the adversary is
not able to achieve the first two goals, and wishes to affect the
functionality so that users may turn to censored search engines
with better service.

With acknowledgement that any P2P protecting mechanism
can be overcome by an adversary with sufficient resources, we
conclude that a censorship-resistant DWSE should provide the
following properties when facing an adversary with modest
resources:

e Result completeness: Given a search query it should
not be possible to remove part of the search results.

e Topic visibility: Tt should not be possible to remove a
topic from the distributed index.

o  Service functionality: It should not be possible to
remove arbitrary search results to decrease the func-
tionality of the service.

Similarly, two kinds of privacy breaches may happen in
DWSE: (1) the adversary may want to learn the identity of
users interested in a certain topic. (2) the adversary may
link different search queries to the same user and thus build
a profile about the user. Search profiles could be used to
deanonymize users. Therefore, in line with existing literature
[4], [10], we argue a privacy-preserving DWSE should provide
the following properties:

e Searcher anonymity: Given a search query it should
not be possible to determine the initiator.

o  Query unlinkability: Given two or more search
queries, it should not be possible to determine whether
they come from the same initiator.

Finally we note that a DWSE should be open source.
Although an open source program allows an attacker to mod-
ify the client software more easily and to attack protecting
mechanisms in unforeseeable ways, a closed source approach
has several fundamental flaws. Firstly, it would impinge the
ability for users to verify that results are not being censored,
that no data about the user is being collected and how the
search results are ranked. Secondly, it is common practice to
make implementations of programs available in order to allow
for proposing and studying of novel attacks.

V. RECOMMENDATIONS

In this section we propose two novel protocols that we
combine with state-of-the-art P2P anonymous communication
designs in order to make DWSE resilient against the at-
tacks in Section III. Consequently, this allows us to achieve
the aforementioned censorship-resistant and privacy-preserving
properties with respect to all currently known attacks.

In Section V-A we propose countermeasures to mitigate
the eclipse and index poisoning attacks. The node density
protocol significantly increases the cost of an adversary to put
its malicious nodes in the necessary position by leveraging
existing work on secure DHT routing [3], [4], and node ID
generation [11]. This allows us to preserve result completeness
and topic visibility for most part of the network. In addition,
the webpage verification protocol detects nodes conducting
censorship, has the malicious nodes removed from the routing
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tables of all honest nodes, and thus forces the adversary to
periodically exchange its malicious nodes in the network.
We achieve this by exploiting the fact that verifying search
results in DWSE is feasible. Combined, an adversary is only
able to attack a small proportion of the network and has
to continuously spend resources for maintaining the attack.
Since every successful attack can be identified shortly, service
functionality is also achieved, and the first two properties
are further strengthened. Subsequently, we address that an
adversary is also able to misdirect search queries by a route
capture attack. We find state-of-the-art protocols to achieve
secure DHT lookup to be sufficient to mitigate this threat.
We discuss this in more detail in Section V-B. For achieving
privacy, we discuss how state-of-the-art protocols on P2P
anonymous communication can be used for achieving searcher
anonymity and query unlinkability in DWSE in Section V-C.

Our recommendations are designed to work on DHTs, be-
cause they have better scalability than unstructured networks,
and avoid private information to go through a central server
like in many hybrid designs, such as Skype. Specifically, we
use Chord as the underlying DHT in accordance with the
literature. Meanwhile, our architecture still allows the option
of having a trusted certification authority (CA) that is known
by all peers. After all, users need to download the source code
or executable files and probably a set of bootstrap nodes from
a server. Therefore, we argue that using a CA is feasible as
long as (1) no private information goes through the service; (2)
the economic cost of maintaining such a service is low even
when the network has millions of peers and a few attackers
with moderate resources. These choices are in line with most
P2P anonymous communication systems, such as Octopus [4]
and Torsk [12].

Our attacks also exploit that YaCy uses self-reported val-
ues, such as a node’s RWI count. This allows the attacker to
easily get selected by other peers, i.e. launching a route capture
attack. A possible solution would be, such as in 12P [13], to
only rely on values that can be verified. This means that a
node should only assume another node to possess so many
RWI entries as it has received from this node in previous
queries. We acknowledge however that this has an impact on
the functionality of the network.

Two additional definitions are necessary to illustrate our
defense mechanisms. In a P2P anonymous communication
system, to locate the responsible nodes for a key, a node may
query many nodes iteratively for their entire routing tables.
We refer to these queries as lookup queries. We use the term
operation queries to refer to the queries for searching and
storing after the responsible nodes are located.

A. Censorship Resistance Against Eclipse and Index Poisoning
Attacks

1) Node Density Protocol: The protocol consists of two
parts. The first part relies on existing work of solving cryp-
tographic puzzles to increase the cost for putting malicious
nodes at a certain place. The second part makes a censorship
attack detectable by analyzing the network topology.

The countermeasure in [11] can largely raise the required
effort of an attacker to generate his desired IDs. The defense
requires a user to solve a moderately hard computational
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puzzle, in order to compute one valid ID from the solution
to the puzzle. A latest value of Dow Jones Index and the
relevant date is incorporated in the ID so that it cannot be
pre-computed. Solving a puzzle takes several seconds of CPU
time on a common laptop. The ID is on a random position
and has a validity period of a week. Therefore, in order to get
enough IDs at the lookup target, the attacker has to generate
a lot of IDs every week. Note that puzzle-based ID generation
methods are more effective as the scale of the network grows.

For the second part of the node density protocol we note
that in order to censor a certain target, the adversary needs to
put several nodes between the target ID and the first honest
successor. As a consequence the attacker increases the node
density of this particular region which is then likely to be
above the average density of the network. In an ordinary
P2P network, this is not much of an advantage, because
malicious nodes could always pretend to be the only peers
in the neighbourhood. However, in P2P networks that have
secure routing, such as [3] and [4], the malicious nodes cannot
lie about the node population in their area.

We use the term span to represent the distance between
the first and last responsible nodes of the same lookup target.
We use s to denote the average span of lookup targets. If
there is a CA, a signed version of s can be distributed by
CA periodically. Otherwise every node can keep its own
estimation of s as the average span of past queries. Once a
node discovers that the span of the current operation query is
smaller than p,, s where p,, is a parameter less than 1, instead of
searching/storing on these nodes, it sends the operation query
to all nodes in the range of s to ensure that statistically, some
honest nodes would be reached.

2) Webpage Verification Protocol: The typical practice to
defend against index manipulation is to have replicas on
multiple index nodes and hope that at least one of them is
honest. However, such an approach can easily be broken by an
eclipse attack in ordinary P2P networks and is not impossible
even with our node density protocol. Besides, an adversary
could also deploy index poisoning attacks to add fake entries
to index nodes, either malicious or honest, to make censored
entries come very low in the ranking.

Fortunately, there is a fundamental difference between
DWSE and a typical P2P application, such as file sharing.
In a file-sharing system, it is not possible to convict a node of
altering search results. If a node does not reply with a certain
entry, there is no way to distinguish between whether the node
deliberately censors it or the entry was dropped due to expi-
ration or unavailable copy of the file. Furthermore, poisoning
attacks are very hard to mitigate, because it is too expensive
for a node to verify whether the filename is consistent with the
content. However in DWSE, it is inexpensive for every node
to verify whether an URL is still available and related to a
search term. Therefore, key to our defense mechanism is to
utilize the public verifiability of web search entries.

The webpage verification protocol consists of the following
7 steps: (1) A webpage is crawled and published anonymously
to the relevant index nodes, if it is a new entry, an index node
should first visit the URL and do a sanity check on the entry.
Sending queries anonymously is crucial in our protocol and
we address this point in more detail in Section V-C. (2) If
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Index Node

Fig. 2: Illustration of webpage verification protocol when a
CA is present. A line of dashes mean the message is sent
anonymously. (1) Publish; (2) Reply with signed ticket; (3)
Send the ticket to verification nodes; (4) Query for search
results; (5) Report malicious node to CA; (6) Verify; (7)
Certificate revocation.

the sanity check passes, the index node replies a ticket with
information of the entry and a signature acknowledging that
the node stores the entry. (3) The node who receives the
ticket then distributes it to v random nodes in the network,
which we call verification nodes. (4) Every verification node
maintains a list of all the tickets it has received. After a random
interval with the average of a minute, with probability p,,
the node executes a random verification job to search for the
keyword of the entry on the index node via an anonymous path.
When executing a verification job, the verification node checks
two things: Firstly, whether the protected entry is censored;
and secondly, whether the returned URLs are valid for the
search term, i.e. to detect poisoning attacks. If the answer to
either question is yes, the index node is considered malicious.
Note that there may be currently unavailable webpages among
the search results. This does not necessarily mean that the
search results are polluted and therefore a small proportion
of unavailable webpages among the search results should be
tolerated.

If a node was identified to be malicious by the verification
node, further actions depend on whether there is a CA in the
network. If there is a CA, the protocol proceeds as follows
with step 5, 6, and 7: (5) the verification node sends the ticket
to the CA, and (6) the CA anonymously verifies the search
results of the accused node. The CA should wait a random
interval before conducting the verification in order to avoid
identification by a possibly malicious node. (7) We design our
certificate revocation mechanism like in [4].

If there is no CA, the verification node can distribute
the ticket and a warning message to every node that has
the malicious node in their routing tables. Upon receiving a
warning, a node verifies that the accused node indeed censors
search results and, if that is the case, removes it from its routing
table. Please note that contacting only the nodes which have
the malicious node in their routing tables is possible in Chord,
because a node’s routing table is deterministic. Note that as
long as the entries on the malicious node also exist on at
least one honest node, the distributed index does not lose any
information.

Additionally to the above described protocol it is necessary
that every node in the network verifies with a probability p,
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with ps; > p, the entries it stores. Otherwise an attacker is
able to launch an attack that we refer to as webserver attack.
In this attack an adversary that possesses a web server is
able to have arbitrary honest nodes being falsely identified as
malicious nodes and consequently have them removed from
the network. To achieve this, an attacker would create text
on webpages such that these webpages, after being crawled,
are stored at the honest peers the adversary wants to have
removed. Subsequently, the attacker would make the webpages
unavailable with the result that the respective verification
requests fail. Consequently, it appears that honest nodes censor
the distributed index. Note that this would also render the
node density protocol ineffective since the adversary is able
to simply remove honest nodes in the area of its malicious
peers. Similarly to step 4, nodes need to check on their own
entries via an anonymous path. Otherwise the attacker would
be able to have the webpages available for only those index
nodes.

The security of our scheme depends on the fact that, similar
to [4], a malicious index node would have to provide the
correct answer to every search query in order to not risk being
reported. This is because the queries from a verification node
or CA is indistinguishable from ordinary queries.

We note that if a malicious node leaves and rejoins the
network with a similar ID and a new public key every time it
has issued a ticket, our protocol is bypassed: The verification
node cannot use the ticket against it because the public key is
different, but it is still responsible for the search term because
the ID is similar. Therefore, a verification node re-stores an
entry in the network if the node it is supposed to check upon
leaves the network. As a result, a newly joined malicious peer
would be again responsible for the entry.

B. Censorship Resistance Against Route Capture Attacks

We recommend ShadowWalker [3] and Octopus [4] to
guarantee the attacker cannot misdirect search queries to
malicious nodes by providing manipulated routing tables to
lookup queries.

In Octopus, each node randomly and anonymously checks
the routing tables of its fingers. If a node finds out that itself
is not included in one of its predecessors’ successor list, or
one of its finger’s fingers is not optimal, the malicious node
would be reported to a CA. Since a surveillance query and a
lookup query are indistinguishable, malicious nodes have to
reply correctly. Their experiment has proved the feasibility of
such a CA.

When a CA is not desired, ShadowWalker provides a
solution worth considering to secure lookup results. A routing
table entry is signed by the node A’s closest predecessors and
successors, called shadows. Any response to a lookup query
is accompanied by signatures of all shadows, and the entry
can only be trusted if they are consistent. As long as one
honest node is presented in the neighborhood, a fake result
cannot pass. We note that the optimal number of shadows is
an open problem: A large number facilitates selective DoS
attacks, whereas a small number makes the scheme vulnerable
to eclipse attacks [14].
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C. Privacy

We argue that the property of sender anonymity in P2P
anonymous communication systems suffices in order to achieve
the same property in DWSE. Sender anonymity can be
achieved by sending queries via anonymous paths [15]. To
construct such a path, typically two or three peers are chosen
as relays to forward a query using onion encryption [15]. We
propose to use ShadowWalker or Octopus to find the nodes
for such paths. ShadowWalker uses a random walk over a
secure topology to find entrance and exit nodes for such a
path. However, ShadowWalker does not provide a strong query
unlinkability, since queries from the same exit node are likely
to come from a small set of peers [4]. To tackle the problem,
Octopus distributes a user’s requests among many anonymous
paths and therefore makes it difficult for an adversary to link
requests of the same node. Notably, Octopus achieves this at
the cost of a higher communication overhead. Finally, we note
that results from systems like Tor [15], such as padding and
encryption, can be utilized to make traffic indistinguishable.

VI. SIMULATION RESULTS

In the following we present simulation data showing the
effectiveness and feasibility of the node density and webpage
verification protocol. We fix one ID to be the target for a
particular search topic. Further we define that to successfully
censor a topic, the attacker needs to control the » = 8 closest
successor nodes. Indeed 8 is a rather low number compared
with existing designs like Faroo. However, a low number is
actually in favor of the attacker, because the attacker only
needs to add few nodes to a network, thus increasing its chance
to not being detected by the node density protocol. For the
webpage verification protocol it does not matter how large r is,
because we only show the increased difficulty of maintaining
censorship.

A. Node Density

The node density protocol uses an ID generation scheme
as building block. We propose to use [11] and refer to this
work for its evaluation. In the following we present simulation
results on the second part of the protocol.

A lookup target is considered to be censored if the span of
target is less than p, s, where p,, < 1. We randomly distribute
1,000, 000 honest nodes and 20,000 target IDs under attack.
We conducted this experiment with different network sizes
and the results are quantitatively the same. For every eclipsed
target we add 8 malicious nodes between the target ID and
the first honest node. To avoid detection, one malicious node
is located on the preceding ID of the first honest index node.
The false negative rate, i.e. the attacker’s success rate, of our
test is the fraction of eclipsed targets the protocol does not
detect. Furthermore, we randomly distribute another 20, 000
lookup targets to measure how often an ordinary target would
be misjudged as being eclipsed, i.e. false positive rate. The
result of two rates for a given p,, is shown in Table II. We use
the same s value for all honest nodes, computed as the average
span of eight continuous nodes, be it honest or malicious. A
network-wide fixed s is possible with the presence of a CA.

As can be seen from Table II, for p, = 0.5 a balance
between false negative and false positive rate is reached and
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TABLE II: Performance of the node density protocol.

Dn | 04 0.45 0.5 0.55 0.6
0.82% 1.73% 3.06% 50% 7.48%
583%  4.08%  3.0% 20% 1.36%

false positive

false negative

TABLE III: Performance of the node density protocol when a
sybil attack decreases the network’s average span.

f | 20% 30%  40% 50%
206% 091% 037%  0.11%
3.68%  55%  837%  12.78%

false positive

false negative

about 97% of attacks are identified. At this point, if a user
issues an operation query on every node in the range of s, all
identified attacks are mitigated. The cost of the node density
protocol is no more than sending a few more operation queries.

To cope with the defense, the attacker may launch a sybil
attack [16] to add a lot of malicious nodes to decrease s.
Thus our second experiment evaluates the relation between
the fraction of malicious nodes f and the success rate of the
attacker. As it turned out to be efficient, we fix p,, = 0.5 in this
experiment. The number of honest nodes remains the same,
therefore when f = 50%, there are altogether 1,000,000
malicious nodes. Again we chose 20,000 censored targets
and 20,000 targets not being censored. As can be seen from
Table III, even when 40% of the nodes are malicious, the attack
can still be identified in 91.6% of the cases.

Our last experiment computes the life expectancy of a
successful attack. We give every honest node a lifetime that
satisfies exponential distribution with mean value ¢, as in [4].
A new node joins the network at a random position when an
old node dies. An attack is ended if a new node falls within
the area of p,s after the eclipsed target. We fix p, = 0.5.
We run the simulation long enough to collect lifetime of 1240
successful attacks, of which the longest is 2.2¢, the average is
0.35¢.

B. Webpage Verification

In the following we show that our webpage verification
protocol can identify and mitigate a successful censorship
attack very quickly, and thus service functionality is also
protected. For this simulation we fix 20 search topics in the
network and assign every topic a popularity sampling from a
Zipf distribution with exponent 0.5. For the network size, we
simulated networks of 1,000, 10,000 and 100,000 randomly
distributed honest nodes. Every node generates 1,000 entries
and assigns them to the topics according to their popularity.
Two tickets regarding every entry are randomly distributed.
To censor a topic the adversary adds 8 malicious successor
nodes to the target ID. Please note that without any of our
proposed countermeasures, the adversary would be able to
successfully censor a topic forever. Our goal is to measure
how many search requests an attacker can censor before being
caught by a verification node.

We simulate the above described network for the time
period of a month. Every minute, an honest node performs
two actions: (1) It issues a search query with a probability of
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Fig. 3: The average number of censored search queries before
detected with different p,,.

pq = 7% following its predefined search topic interests; (2) It
requests the search topic of a random verification job chosen
from the tickets it received with probability p,,.

We measured the efficiency of the webpage verification
protocol for different p, in a network. We present the results
for a network of size 100,000 in Figure 3. Note that the
results are quantitatively the same regardless of the network
size. Further, we only show the results of the three most
popular topics. The results are similar for topics with different
popularity, since more popular topics have more entries, and
thus more verification requests. With a rather low p, = 1076,
the attacker is able to censor most of the search requests.
However, with p, = 10™% the attacker’s efficiency starts to
significantly decrease and with p, = 1072 the attacker is
virtually not able to censor search results. We acknowledge
that in reality, the attacker aims for result completeness may
only choose to censor part of the entries in a topic, thus the
optimal p,, should be larger.

The overhead of the verification processes results from the
anonymous lookup of Octopus and the additional search replies
to the verification node. With p, = 10~2 every node in the
network performs a verification request on average every 1, 000
minutes. As stated in [4], Octopus consumes 4.3 Kbps if a
secure lookup is performed every 10 minutes. So the overhead
of the webpage verification protocol is negligible.

Although we present here no recommendation on the
number of verification nodes v due to space constraints, we
recommend that v should be higher than one. This is because
if only one node performs a verification job, there is a rather
high probability that the webpage ends up to be no longer
verified upon. This happens when the verification node crashes
or the node is by chance a malicious one.

VII. RELATED WORK

Squirrel [17] is the first work that proposes to use P2P net-
works to build web caches. In Squirrel, every node maintains
a cache of webpages that are shared among each other. The
authors show that Squirrel performs similar to a centralized
web cache.
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The work in [18] shows that P2P networks are not feasible
to create search engines that maintain an index of the entire
WWW. This is because the storage, bandwidth and computa-
tion requirements cannot be met with P2P networks. However,
we argue that DWSE is suitable to maintain an index of parts
of the WWW that is then censorship resistant and privacy
preserving.

Recently, Felber et al. [19] proposes CoFeed, a system that
enriches the search results of a centralized search engine with
recommendations of other CoFeed users. It therefore allows
users to publish interesting search results in a P2P network.
While this makes CoFeed similar to Seeks, CoFeed proposes
mechanisms to protect the privacy of its users. However, please
note that there is no implementation of CoFeed and that
censorship resistance is not addressed by CoFeed.

Querying search engines with web anonymizers, such as
Tor [15], or with proxy search engines, such as Startpage®
and DuckDuckGo’ is another possible solution to achieve
privacy in web search. In particular, a search engine provider
is not able to link a search query to the searcher’s IP address.
Furthermore, Tor is a suitable solution for escaping local
censorship. However, the user can still not enjoy censorship-
resistant and transparent search results, because the search
results still origin from the same centralized search engines.

There are several technologies that try to prevent
search engine providers to create an accurate user profile.
Obfuscation-based private web search (OB-PWS), such as
TrackMeNot [20], refers to techniques that automatically send
dummy requests along with a user’s real search query. Private
Information Retrieval (PIR) [21], [22] allows users to down-
load records from a database such that the database owner
has no means in determining what particular data the user
was interested in. However, neither OB-PWS nor PIR are
suitable protecting mechanisms. As shown in [10], current
evaluations of OB-PWS techniques overestimate the protection
for users since they do not address a strategic adversary that is
aware of the user’s obfuscation mechanism. PIR mechanisms
are unlikely to be deployed by search engine providers as
they have no incentive to implement computationally costly
mechanisms that hinder their business model. Finally, we note
that neither OB-PWS nor PIR mechanisms are suitable to
protect a user from using a censored web index.

VIII. FUTURE WORK

Future work includes an implementation of the node den-
sity and webpage verification protocols in a DWSE. This
allows the in-depth analysis of the parameters in a real-
world setting. In particular we would like to explore more
sophisticated attack strategies in which the adversary strategi-
cally provides uncensored results in order to avoid detection.
Furthermore, we will investigate the connection between the
ratio of p, and p, and the nodes an adversary is able to remove
from the network with the webserver attack.

Investigating the impact of search results ranking on cen-
sorship is future work. If the ranking mechanism is flawed,
an adversary could try to flood the distributed index with

Ohttps://startpage.com/
"https://duckduckgo.com/
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irrelevant information and thereby effectively censoring some
information as they appear very late in the search results.

Finally, in future work we would like to explore possibil-
ities to formally verify whether a DWSE fulfills censorship
resistance and privacy protection. This would allow for guar-
antees of the respective security properties while our current
countermeasures only provide security in a heuristic manner.

IX. CONCLUSION

In the paper we introduce the designs of three real-world
DWSE: Faroo, Seeks and Yacy. To the best of our knowledge
these are the only real-world DWSE that are actually in use.
We choose YaCy as example to show that an adversary with
modest resources is able to censor the distributed index and to
find out the users that are interested in a particular topic.

To address the flaws we first identify security proper-
ties every censorship-resistant and privacy-preserving DWSE
should fulfill. We then propose two protocols which, combined
with state-of-the-art P2P anonymous communication designs,
achieve censorship resistance in DWSE. Firstly, the node
density protocol allows the detection of malicious nodes by
investigating the node distribution in the network topology.
Secondly, the webpage verification protocol leverages the
verifiability of search requests and thereby allows the detection
of malicious nodes conducting censorship. Our simulation
results show that both protocols are efficient and impose
only little overhead to the network. In particular, the node
density protocol detects about 97% of all attacks at a very low
false positive rate. For the webpage verification protocol, our
simulation shows that very few verification jobs in the network
suffice in order to detect ongoing censorship. In addition, we
argue that protecting a user’s privacy in DWSE is similar to
protecting it in P2P anonymous communication. Finally, we
note that our countermeasures do not make a censorship attack
impossible, but only increases the cost such that attackers
with modest resources cannot do any significant harm to the
network. However, defending against resourceful attackers is
a known hard problem in P2P systems.
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