Teaching HW/SW Co-Design With a Public Key
Cryptography Application

Leif Uhsadel, Markus Ullrich, Amitabh Das, Dusko Karaklaji¢, Josep Balasch,
Ingrid Verbauwhede and Wim Dehaene, Member IEEE

Abstract—This paper describes a lab session-based course
on hardware/software (HW/SW) co-design. Real problems often
need to combine the speed of a HW solution with the flexibility
of a SW solution. The goals of this course are to show that there
are many alternative solutions in the design space, and to teach
the fundamental concepts of HW/SW co-design. The sample
application for the course project is a basic public key (RSA)
application. This application is attractive for pedagogic purposes,
because its complex arithmetic and large word lengths make it
difficult to realize in SW on an embedded micro-controller. But
the alternative of a pure ASIC (application-specific integrated
circuit) application is also not a satisfactory solution, as this lacks
the flexibility to support multiple public key applications. The
project follows a step-wise approach, with assignments that build
on each other. Students are required to make their own decisions
as to the partitioning between HW and SW, the interface design,
and the optimizations goals. Besides imparting hard skills in
HW design and embedded SW design, the course inculcates
several soft skills in particular, decision making, presentation
skills, teamwork and design creativity - generally overlooked in
engineering.

Index Terms—HW/SW co-design, public key cryptography,
Montgomery, RSA, 8051 microcontroller

I. INTRODUCTION

HE recently revised M.Sc. program in Electrical Engi-

neering at KU Leuven, Belgium, offers students two spe-
cialization tracks: Electronics and Integrated Circuits (EIC)
and Embedded Systems and Multimedia (ESM). The course
Design of Digital Platforms is part of the common core
education modules taught during the first semester, and it
serves to bridge the two tracks. Students who follow the EIC
track need to understand the various applications that will
run on the platforms so that they can build more efficient
and stable processors. Students who follow the ESM track
need to understand digital platforms so that they know what
performance can be expected from them. In its earlier format,
the M.Sc program had no bridging course, and the tracks were
more independent.

The goal of this Design of Digital Platforms course is to in-
troduce students to the world of Hardware/Software (HW/SW)
co-design of electronic systems [1]. The idea behind HW/SW
co-design is to address the development of HW and SW
components jointly when designing an application. A large
design space offers many choices for design decisions and
optimizations; at the same time these choices influence trade-
offs between area, execution time, power, energy, flexibility,

All authors except Prof. Dehaene are with KU Leuven, ESAT/SCD-COSIC
and iMinds; Prof. Dehaene is with KU Leuven, ESAT/MICAS and iMinds.
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

and design effort. In this course, students gain understanding
of this large design space through practical experience. The
focus of the course project is to optimize the implementation
in terms of three of these design dimensions (area, execution
time and flexibility), as will be explained below. For future
offerings of the course other optimization goals, such as en-
ergy consumption for battery-operated devices, would be valid
options. The course guides students step-by-step through the
SW and HW design, and then combines the two approaches
in a final stage. By first designing HW and SW separately,
students experience the limitations and advantages of both.
This prepares them well for the co-design phase of the project,
where the focus shifts to higher-level design decisions, such as
time-performance trade-off management, HW/SW boundary
selection, and interface design.

The trade-offs in system design are best taught by com-
plementing theoretical classes with hands-on experience. This
approach has also been followed in other related works. For
instance, [2] presents a co-design course applying symmetric
key ciphers. In [3] a helicopter-like robot motion control is
implemented, while [4] discusses co-design as an emerging
discipline in education. For the course described here, a cryp-
tographic system was chosen as the application, for several
reasons: first, efficient implementation of cryptography is a
common problem in industry; second, the modular nature of
cryptographic algorithms allows a nice division of the tasks
into multiple teaching sessions; and third, the computational
complexity of public key cryptography becomes a challenge
when targeting embedded devices.

Cryptographic systems are used to enable security in a
wide range of IT-related fields. RSA [5] is a standardized
and popular public key cryptographic system for key ex-
change and digital signatures. Its main computation is modular
exponentiation using long integer operands, typically larger
than 1,024 bits, making computational demand one of the
drawbacks of public key cryptography. Implementing public
key cryptography on micro-controllers is known to be a
difficult task, but one that is nevertheless needed for smart
card applications such as banking cards or e-IDs. SW-only
solutions are possible on some micro-controllers, but require
a huge amount of optimization effort while consuming most
of the micro-controllers resources. HW-only implementations,
on the other hand, are fast, but consume more silicon area and
are not as flexible as SW solutions since they cannot be easily
updated once deployed. HW/SW co-design thus appears to be
a natural solution, by combining the speed of HW with the
flexibility of SW.

The goal of the project-oriented course is to implement
an RSA cryptographic system using an 8-bit micro-controller
with an attached co-processor. The contribution of this paper
is to provide a thorough education-oriented description of
the project-based HW/SW co-design course, including dis-
cussions of educational goals, results, grading, and plagiarism
detection.

The remainder of the paper is organized as follows. The
course’s teaching goals are explained in Section II and the
teaching approach is presented in Section III. In Section IV,
a detailed description of the course is given. Section V
covers the software assignments, and Section VI focuses
on the hardware assignments. The final task of a co-design
implementation is presented in Section VII. The results of the
course, covering implementation results and grading method-
ology, are given in Section VIII. The paper is concluded in
Section IX.

II. EDUCATIONAL GOALS

The educational goals of this course are fourfold: digital
platform understanding, co-design experience, hard skills and
soft skills.

Digital platform understanding: Understanding the role
of the digital platform as the link between an application
and its realization is a key design aspect. When implement-
ing next generation embedded systems, the choice between
HW (ASIC! design) and SW (coding for a general purpose
processor) is not binary. Indeed, in reality there is a large
design space between the two extremes of pure HW or pure
SW. Thus for the future embedded systems designer, the
correct selection and understanding of the target platform
is of extreme importance. Similarly, the future integrated
circuits designer needs to understand the complexity of the
applications that will run on the digital platform he or she
will design.

Co-design experience: The many design choices available
in HW/SW co-design will affect the final result. These choices
often represent a trade-off, and students will learn that there
is no single solution. Part of the teaching goal is to encourage
students to focus their optimization in the triangle: execution
time, hardware area and flexibility, Fig. 1. Flexibility is the
systems ability to adapt with little overhead cost in terms of
both performance and cost. It is thus measured indirectly, by
analyzing the performance and cost of a related application
on the same HW/SW platform. Cost can be expressed by
hardware size and/or energy or power consumption, while
execution time is measured by throughput or clock cycles.
In the course, cost is measured by hardware size and time
by throughput. SW is easier to update than HW, and archi-
tecture features should support multiple applications without
increasing hardware cost. A pure software solution will be low
cost (as no additional hardware is required) and will offer the
most flexibility, but will be the slowest. A large co-processor
or full custom design will require the most additional space
for hardware and will offer no flexibility, but will be the fastest
solution. Students have to address this trade-off between

TASIC: application-specific integrated circuit

o=c

Fig. 1. HW/SW co-design trade-off

Hard skill

Soft skiH Co-design

Distribution tasks (based on course schedule)

Fig. 2.

performance, cost and flexibility. Every decision take shifts
the final solution towards a different trade-off position.

Hard skills: Hard skills comprise the technical skills
required to carry out the co-design project; these include
knowledge of several programming languages for HW and
SW design, of co-design simulation, of the corresponding de-
velopment tools. Understanding of the platform characteristics
and the implemented algorithms is also required. These hard
skills, particularly experience in one or several programming
languages, can be either a course prerequisite or, alternatively,
a teaching goal.

Soft skills: Soft skills or non-technical skills addressed
in this course are decision making, oral presentation and
discussion, writing a report, organizing workload to meet
deadlines, and working in a team including sharing workload.
Soft skills are often ignored in technical studies. The co-
design project offers several opportunities to integrate soft
skills. The students choose their optimization goal, and this
decision has to be explained via a written report and oral
presentations in front of the class, professor and TAs. Students
also have to learn to make a plan, and keep to schedule. For
the SW tasks, since limited time is given to finishing the
task, they have to decide when to stop optimizing the code.
Additionally, students work in pairs; each pair must discuss
problems, decide how to allocate tasks and share code, and
set intermediate milestones for each assignment.

III. APPROACH

This section explains the approach taken to achieve the
educational goals described in Section II.

Theory. A limited set of traditional lectures explain various
design methodologies and design steps, covering the theoret-
ical aspects of data-flow and control-flow analysis, and the
impact of memory management and transformations. These
lectures also cover design for high throughput and/or low
power/low energy. Finally, students are exposed to a wide
range of digital platforms for embedded devices, among them
ASIC, ASIP, FPGA, domain-specific processors, embedded
micro-controllers. Note that this paper does not cover the
theory part and is focusing on the course project.

Co-design experience. This is inculcated in a two-phase
project-based approach. In the first phase, students carry
out several assignments in which hardware and software are

treated separately. In this phase, which includes implemen-
tation and optimization tasks, students gain experience on
the platforms, and of the various properties of hardware and
software. In particular, they learn the limits of software and
thus the need for a co-processor. In the second phase, students
have to build a co-design, using the modules developed during
the first phase as a starting point. One of the critical remaining
tasks at this point is to select the HW/SW boundary, that is,
the design of the interface between hardware and software
along with a concept for data flow and control flow between
the hardware and the software.

Hard skills. In addition to the lab sessions, extra exercises
remedy students’ lack of background knowledge or experi-
ence in the programming languages used during the course.
Should students have a strong background in this field, the
course could be given in less time, or with more ambitious
optimization goals, or with more complex applications.

Soft skills. Students work in pairs throughout the semester.
Teamwork being one of the teaching goals of the course,
a more realistic teamwork scenario, especially with respect
to post-graduation employment, is achieved by pairing stu-
dents of different academic backgrounds. Typically the pair
will combine students with integrated circuit background
and embedded systems background, and with a differing
Bachelor’s degree. Most students will have taken a high-level
programming language course (such as Java) at the Bachelor’s
level, but may not have experience in hardware description
languages.

Application. Commonly encountered in industry, co-design
of public-key systems on embedded microcontrollers is also
well suited for education. First, public-key algorithms al-
low for a modular design with a step-by-step bottom-up
approach. This makes it possible to split the project into
the required assignment modules, which can be reused in
subsequent assignments. (See Section IV for a description of
all modules.) The course uses the 8051, an old, but commonly-
used, micro-controller. It is widely employed in the industry
and comes with free development tool chains. Further, its
limited resources leave students in no doubt that additional
hardware is required to carry out public-key cryptography on
this platform.

IV. COURSE DESCRIPTION

This section describes the structure and content of the
course project.

Bottom-up design approach. Public key algorithms can be
split into three layers of abstraction, Fig. 3. For this project
the cryptographic algorithm RSA was chosen. RSA is a so-
called asymmetric key algorithm, which means that the key
consists of two parts: the public and the private. The principle
can be best compared with a padlock; anyone can close an
open padlock but then only the person with the key can open
it. Data encrypted with the readily available public key can
only be decrypted by the owner of the private key. The RSA
algorithm is based on modular exponentiation. The cipher text,
for example, is calculated with the formula ¢ = m® (mod n),
where m is the message and e and n are part of the public
key. Further details can be found in [5].

Exponentiation

M.

'y Itiplication.
Addition, Subtraction

Fig. 3. Levels of abstraction of RSA

processor

‘

g 1

= co-
:

Ext. Ram

Fig. 4. Architecture overview

The next lower layer contains the arithmetic operations
required such as modular long integer exponentiation. A
schoolbook square and multiply algorithm is used here; for
example, z°10 = 12 = ((((1)? - 2)?)?) - 2, see [6]. The
bottom layer comprises the required modular multiplication,
modular addition and subtraction. The multiplication is the
most important algorithm as it is responsible for most of the
execution time. For this project, the Montgomery multipli-
cation [7], a common approach for modular multiplications
avoiding costly inversion or division-based reductions, was
chosen.

Architecture. The 8051 micro-controller [8] was chosen
as the target platform for software development. The 8051 is
a lightweight 8-bit micro-controller, commonly used in low
cost applications, whose architecture is illustrated in Fig. 4. It
has four 8-bit parallel ports to communicate with peripherals.
Two of these ports can also be used to extend the limited
internal RAM; the basic model only supports 128 bytes, with
additional external RAM. The external RAM can also be
accessed by co-processors.

Timeline. The project timeline is shown in Fig. 5. In addi-
tion to the theory lectures that run in parallel with the project,
there are three other types of lectures. First, exercise sessions
in the computer classes give training in practical skills, such
as introduction to C, GEZEL [1], and first steps with the tool-
chain. A second set of sessions serve to explain and implement
the building blocks of the step-by-step approach. Third, at the
end of course there are several free sessions during which
teaching assistants (TAs) are available to answer questions
and provide guidance.

The timeline shows that after a short introduction to C, the
software assignments start right away. The practical sessions
on the GEZEL hardware description language run in parallel,
followed by an exercise introducing interface techniques and
simulation. By week six, these exercises and assignments fin-
ish with the first milestone, the Montgomery multiplication in
software, and students give an oral presentation. Subsequently,
in the second milestone, they rebuild a Montgomery multiplier
in HW, for which they can reuse code from the initial
exercises. When the co-processor building blocks are ready,

S1: Modular addition/subtraction in C
S2: Multiplication in C

S3: Montgomery multiplication in C
S4: Assembly optimization

S5: Intermediate Presentation

S6, S7: Montgomery in hardware

S8: Kickoff final project

QA Sessions

Final presentation

Ex1: IDE&Pointer [mmmmm—m
Ex2-4: Gezel
Ex5: Interfaces

Week
6 7

Fig. 5.

they then create an interface. In the final sessions, students
are encouraged to profile their code, find bottlenecks and
improve their interface design and apply further optimizations
according to their individual design goals.

Toolchain. For software development students are provided
with the small device C complier SDCC [9] and the integrated
development environment MCU 8051 IDE [10]. For hardware
development GEZEL is used [1]. GEZEL is a high level hard-
ware development tool-chain comprising a compiler, which
can be translated to VHDL for further synthesis, and a cycle-
accurate simulator. GEZEL comes with co-simulation support
for a set of micro-controllers, including the 8051, and allows
for easy and quick co-simulation of hardware and software.
All the course tools are free to use, and bugs found by students
are always reported to the tool developers.

V. SOFTWARE ASSIGNMENT

The software assignment covers a total of five sessions at
the start of the course, see Fig. 5. The goal of this step is to
highlight the difficulty of efficiently implementing very large
word length operations (1024 bit squaring in RSA) in resource
constrained SW platforms such as the 8-bit 8051. As a side
effect, the students also learn the negative impact of using a
high-level programming language, such as C, instead of a low-
level language, such as assembly, when aiming for efficient
arithmetic implementations.

Starting from sample code, students are expected to imple-
ment all operations required by the cryptographic algorithm
in the lower multi-precision and modular arithmetic layers.
These include addition, subtraction, and multiplication.

Students are given reference algorithms for software im-
plementations from various sources [6], [11] to establish a
common basis from which to compare the implementations.

In the last session, dealing with software optimization,
students are asked to improve their Montgomery modular
multiplication. The compilation process from C to 8051
machine code leaves plenty of room for optimization. Stu-
dents are asked to identify the bottlenecks in their current
implementations and rewrite them in assembly language or
using inline assembly. Typical examples of bottlenecks when
implementing arithmetic operations are unnecessary accesses
to memory, storage of intermediate results in external memory,
inefficient loop control routines, and handling of carry bits.

Feedback to students: For each of the two milestones, (see
Section IV-Timeline , an online spreadsheet is set up. Students
are asked to enter their results in the spreadsheet as soon as

Course schedule: B represents project sessions, M stands for exercise session and

indicates free working sessions. Deadlines are marked with ¢.

they have a working version, and to update this as their results
improve. The spreadsheets serve two purposes: to provide
students with continuous feedback on the performance of their
implementation, and to create a competitive environment that
encourages students to apply further optimizations and find
more creative solutions.

VI. HARDWARE ASSIGNMENTS

The hardware part of the course consists of five sessions,
covering RTL modeling and teaching the parallel nature
of hardware. This is in contrast to software, which runs
sequentially.

Two important principles in hardware description are in-
troduced: 1) cloning, which allows multiple instances of a
single data path to be created, and 2) combining, which allows
complex hierarchical designs to be built from the smaller
blocks. For instance, an N-bit adder may be later reused to
implement the Montgomery multiplier [12]. At this point,
students can perceive the advantages of hardware modeling.
By choosing a 1-bit digit-size, the Montgomery multiplication
algorithm is simplified and made easier to implement in
comparison the software assignments, where the digit size
matches the word size of the processor (1 byte). During this
phase, students are advised to minimize the area consumption
of their designs by reducing the number of registers and by
implementing a bit-serial version of the algorithm.

The VHDL code obtained (generated from the Gezel code
using the integrated converter tool) is synthesized for FPGA
using the Xilinx ISE environment. The target platform, Xilinx
Virtex 4 XC4VFEX60 [13], was chosen because it is has
enough resources to implement even the very inefficient and
area-consuming designs that students are likely to produce,
due to their lack of experience. Students are asked to report
the following performance results:

o Area occupied by the FPGA, in percent.

o Number of occupied Lookup Tables (LUTS).

o Number of flip-flops in the design.

« Maximum clock frequency and the critical path.

VII. CO-DESIGN

The co-design starts with an introduction to the existing
HW/SW interfaces supported by the 8051. In the final class
assignment, students combine their HW and SW modules
and then optimize their design during the Q/A sessions.
This assignment resembles the second milestone. Again stu-
dents make a performance comparison using a second shared

spreadsheet as in the software part, Section V. Also, students
must defend their design in a presentation and hand in a report.

Since the micro-controller and the co-processor run at dif-
ferent clock speeds, handshaking through acknowledgement
signals must be established, along with a strategy for efficient
control flow and data flow. The HW/SW interface can easily
become the bottleneck of the co-design, as will be seen from
the results.

As with the first milestone, students have to defend their
design in front of the class, report their performance mea-
surements in a spreadsheet shared with the class, and write a
report that covers:

« the technical results such as execution time and size of

hardware

« the design methodology and test approach

« the major design decisions and optimizations

VIII. RESULTS
A. Technical

Fig. 6 shows the students’ design solutions in terms of area,
time, and flexibility. Good overall designs are closer to the
origin of the scatter plot. While the distance to the origin
serves as a measure of the quality of the design, it does does
not take flexibility into account.

Flexibility is difficult to measure, and solutions are sorted
into three sets. Basically, the more of the system remains in
software, the more flexible it is considered. Flexible designs
(A) are considered to be those where the exponentiation
algorithm is implemented in SW on the micro-controller,
while the computationally costly arithmetic operations are
performed in HW. Less flexible approaches implementing
the entire protocol in HW are classified as (B), while other
approaches are summarized as (C).

Since students in this particular course have very little
coding experience it can be difficult to see the trade-offs , in
terms of area or execution time when comparing teams. Teams
with stronger coding skills often achieve a system that is faster
and smaller. But while this trade-off cannot be shown on the
graph, student feedback indicates that they do experience this
trade-off during their own optimization process.

The graphs further show that the HW/SW boundary does
not necessarily impact speed. Apart from the aforementioned
impact of students low experience of coding, it can be seen
that a well-designed interface can reduce the overhead of data
and control flow between HW and SW to an almost negligible
level, see also [14]. Certainly the pairs with good results
for optimizing runtime and hardware size are also likely to
achieve better interface design.

It can be seen that fast HW designs (category B) typically
pay a price in area. When (A)-designs are slow, this is a result
of a bottleneck in the interface and the SW part. Most common
examples are unnecessary data flow, inefficient control flow,
or slow exponent scanning in SW.

B. Evaluation

This section describes the approach taken to grading, and
discusses the definition and detection of plagiarism in the
course.

041

e} O flexibility A
O Aflexibility B
w03 g P flexibility C
® m}
g 8, k » o
(m)
5 0.2 o
3 8 9 ©
2 @
@ 0.1 o
0 i
4000 5000 6000 7000 8000

area [register bits]

Fig. 6. Time-area-flexibility trade-off of student solutions

Oad A A B+ B8 B- crlc el el F

Fig. 7. Distribution of grades

1) Grading: Assessment data for grading is generated
twice during the project: after the first and second mile-
stone. The source code resulting from assignments prior to
the milestones is completely reused, hence an evaluation of
the milestone-assignments evaluates the whole course. For
simplicity reason we will discuss only the combined criteria
for the final grade.

Given that a HW/SW co-design is a tradeoff between
area, speed and flexibility, all three aspects are important
for grading, but while area and speed can easily be quan-
tified, that is not true for flexibility. Also the project uses
only basic algorithms and just gives an introduction to a
simple interface. Both leave a lot of optimization potential
open. Creative strategies in the interface design and creative
optimizations in hardware and software are also taken into
account. It could be said that these last two criteria are already
covered in addressing speed, area and flexibility. But it can
happen that solid straightforward solutions achieve similar or
better performance than a creative solution with several good
optimizations but which has a single overlooked bottleneck.
Giving extra credit for creativity helps in balancing the grades.

The basic final grade is directly calculated from the area
and speed of the final project. This base grade is then adjusted
by a broad range of adjustment criteria, a set of positive and
negative points covering the quality of the report, presentations
skills, quality of code, flexibility of the design, interface
between hardware and software, and creative optimizations.
Clearly there can be a significant adjustment of the base
grade in either direction, but not to the extent that a poor
performance design can have a top score or that a high
performance design will fail the course.

The pairs grades are given as points according to the local
university system; Fig. 7 shows these as U.S.-type grades.
These grades show that many students pick up the design
methodology quite well, with only a few failing the course or
getting a bad overall score. Most achieve quite solid results
and several achieve the top score.

2) Plagiarism: Plagiarism is a general problem, and espe-
cially in a course which requires students to write code. Staff

TABLE I
MEASURABLE LEARNING PARAMETERS

Measurable Learning Parameter Very effective | Effective | Not so effective | Ineffective
Improving the programming skills of the students in Embedded C 7 33 9 1
Improving the technical skills of the students in a hardware description language (Gezel) 15 28 6 1
Improving the coding skills of the students in Assembly language 7 18 19 6
Improving the students’ understanding of architecture of a co-design project 6 33 9 2
Guidance of the Teaching Assistants 28 18 4 0
Structure of the course 20 14 15 1

and students do not always have the same definition of plagia-
rism, [15]. In this course students are encouraged to discuss
problems with each other and help one another to develop
solutions and share ideas. However, copying code is strictly
forbidden. This is detected by identifying suspect candidates
and then performing manual code analysis supported with diff
tools. Suspect candidates are those who have exact matches in
runtime or hardware size, very similar designs, or who made
slow progress during the seminars followed by outstanding
results.

C. Teaching Goals

Co-design methodology, hard skill, and soft skill teaching
goals are evaluated. Feedback is collected in the form of a
questionnaire after the course. The questionnaire is anony-
mous and optional. In the year 2011/12, 21 of 96 students an-
swered it, while in the following year responses were received
from 29 out of 98 students. Some of the main results are
summarized in Table I. The students were quite satisfied with
the growth that they could see in their software programming
and technical skills in Gezel, with the majority answering
in the affirmative. Most of the students also improved their
understanding of the architecture of co-design projects. The
guidance provided by the TAs and the overall structure of the
course was also found to be quite effective.

When asked if they would use technical concepts from
the course in the future, fourteen answered they definitely
would, twenty-five answered probably, eight were undecided,
and only three did not answer. The close contact of TAs with
the students during the course also gives the authors a positive
impression of the learning effect of the students. Given this,
and the many creative solutions seen from code analysis, the
co-design concept can be considered successful. Code analysis
from the beginning and end of the course reveals that the
technical skills of the students, especially coding, improves a
lot. The students rate working in a team as being congenial,
which matches the impression of those supervising the classes.
The other soft skills, oral presentation and written report show
variable results, underlining the importance of improving the
integration of soft skills in technical studies.

IX. CONCLUSION

HW/SW co-design experience helps students learn to over-
come the individual shortcomings of hardware and software
and combine them to achieve fast, small and flexible designs.
By implementing a complex cryptographic algorithm, students
become familiar with advanced long number arithmetic tech-
niques, widely employed in most signal processing applica-
tions. As well as acquiring technical skills, they experience the
challenge of teamwork and defending their solution in front
of the class.

Student feedback was consistent with the observations and
code analysis made throughout the project, and show that the
teaching goals were reached and that students absorbed the
concepts taught in the course and plan to use them in the
future.

ACKNOWLEDGMENT

The authors would like to thank the students of the aca-
demic year 2011/2012 and 2012/2013.This work was sup-
ported in part by the Research Council KU Leuven: GOA
TENSE (GOA/11/007) and by the Flemish iMinds projects. In
addition, this work was supported by the Flemish Government,
FWO G.0550.12N, by the Hercules Foundation AKUL/11/19
and by the Intel University Program. Markus Ullrich is an
FWO Doctoral researcher.

REFERENCES

[1] P. Schaumont, A Practical Introduction to Hardware/Software Codesign.
Springer, 2010.

, “A Senior-Level Course in Hardware/Software Codesign,” Edu-
cation, IEEE Transactions on, vol. 51, no. 3, pp. 306 —311, aug. 2008.

[3] R.H. Klenke, J. H. Tucker, and J. M. Blevins, “A new hardware/software
codesign environment and senior capstone design project for computer
engineering,” IEEE Microelectronic Systems Education (MSEO03), pp.
66 — 67, June 2003.

[4] W. Wolf, “A decade of hardware/software codesign,” IEEE Transactions
on Computer, pp. 38 — 43, April 2003.

[5] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, pp. 120-126, 1978.

[6] A.J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of
Applied Cryptography, 1st ed. Boca Raton, FL, USA: CRC Press,
Inc., 1996.

[7]1 P. L. Montgomery, “Modular Multiplication Without Trial Division,”
Mathematics of Computation, vol. 44, pp. 519-519, 1985.

[8] J. Wharton, “An Introduction to the Intel®MCS-51™Single-Chip
Microcomputer Family,” Intel Corporation., Application Note AP-69,
980 May.

[9] S. Dutta. (1995) SDCC - Small Device C compiler. [Online]. Available:
http://sdcc.sourceforge.net

(2]

[10] M. OSmera. (2011) MCUSOS1IDE. [Online]. Available: http://
mcu805 lide.sourceforge.net/

[11] C. K. Kog, T. Acar, and B. S. Kaliski, Jr., “Analyzing and comparing
montgomery multiplication algorithms,” IEEE Micro, vol. 16, no. 3, pp.
26-33, 1996.

[12] C. K. Ko¢ and T. Acar, “Montgomery Multiplication in GF(2k),”
Designs, Codes and Cryptography, vol. 14, pp. 57-69, 1998.

[13] Xilinx, “Virtex-II Pro Data Sheets,” Tech. Rep., 2011.

[14] L. Uhsadel, M. Ullrich, B. Preneel, and I. Verbauwhede, “Interface

design for mapping a variety of RSA exponentiation algorithms on
a HW/SW co-design platform,” in 23rd IEEE Application-specific
Systems, Architectures and Processors (ASAP 2012). 1EEE, 2012.

D. Chuda, P. Navrat, B. Kovacova, and P. Humay, “The issue of
(software) plagiarism: A student view,” Education, IEEE Transactions
on, vol. 55, no. 1, pp. 22 -28, feb. 2012.

[15]

Leif Uhsadel is a Ph.D. candidate and teaching assistant with the COSIC
group of the university of Leuven (KU Leuven). His research interests are
efficient implementation of cryptographic algorithms on constrained devices
and side-channel attacks. Uhsadel has a M.S. in IT security from the university
of Bochum (Ruhr-Universitdt Bochum).

