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Abstract. The block cipher XTEA, designed by Needham and Wheeler,
was published as a technical report in 1997. The cipher was a result of
fixing some weaknesses in the cipher TEA (also designed by Wheeler and
Needham), which was used in Microsoft’s Xbox gaming console. XTEA is
a 64-round Feistel cipher with a block size of 64 bits and a key size of 128
bits. In this paper, we present meet-in-the-middle attacks on twelve vari-
ants of the XTEA block cipher, where each variant consists of 23 rounds.
Two of these require only 18 known plaintexts and a computational ef-
fort equivalent to testing about 2117 keys, with a success probability of
1−2−1025. Under the standard (single-key) setting, there is no attack re-
ported on 23 or more rounds of XTEA, that requires less time and fewer
data than the above. This paper also discusses a variant of the classical
meet-in-the-middle approach. All attacks in this paper are applicable to
XETA as well, a block cipher that has not undergone public analysis yet.
TEA, XTEA and XETA are implemented in the Linux kernel.

Keywords: Cryptanalysis, block cipher, meet-in-the-middle attack, Feis-
tel network, XTEA, XETA.

1 Introduction

Timeline: the TEA family of block ciphers

– 1994. The cipher TEA (Tiny Encryption Algorithm) is a 64-round Feistel
cipher that operates on 64-bit blocks and uses a 128-bit key. Designed by
Wheeler and Needham, it was presented at FSE 1994 [23]. Noted for its
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simple design, the cipher was subsequently well studied and came under a
number of attacks.

– 1996. Kelsey et al. established that the effective key size of TEA was 126
bits [11]. This result led to an attack on Microsoft’s Xbox gaming console
where TEA was used as a hash function [22].

– 1997. Kelsey, Schneier and Wagner constructed a related-key attack on TEA
with 223 chosen plaintexts and 232 time [12]. Following these results, TEA
was redesigned by Needham and Wheeler to yield Block TEA and XTEA
(eXtended TEA) [17]. While XTEA has the same block size, key size and
number of rounds as TEA, Block TEA caters to variable block sizes for
it applies the XTEA round function for several iterations. Both TEA and
XTEA are implemented in the Linux kernel.

– 1998. To correct weaknesses in Block TEA, Needham and Wheeler designed
Corrected Block TEA or XXTEA, and published it in a technical report [18].
This cipher uses an unbalanced Feistel network and operates on variable-
length messages. The number of rounds is determined by the block size, but
it is at least six. An attack on the full Block TEA is presented in [19], where
some weaknesses in XXTEA are also detailed.

– 2002–2010. A number of cryptanalysis results on the TEA family were
reported in this period. Table 1 lists the attacks on XTEA and their com-
plexities. In [10], it was shown that an ultra-low power implementation of
XTEA might be better suited for low resource environments than AES. Note
that XTEA’s smaller block size also makes it advantageous if an application
requires fewer than 128 bits of data to be encrypted at a time.

The meet-in-the-middle attack. The meet-in-the-middle attack was first
introduced by Diffie and Hellman in 1977 [5]. Since then, this technique and
its variants have been successfully used against several block ciphers, includ-
ing reduced-round DES [4, 6]. Unlike Diffie and Hellman’s original attack, the
meet-in-the-middle attacks in this paper3 have negligible memory requirements.

We denote the message space and the key space by M and K respectively.
Now consider two block ciphers AK , BK : M × K → M and let YK = BK ◦
AK , where ◦ denotes function composition. In a meet-in-the-middle attack, the
adversary deduces K from a given plaintext-ciphertext pair (p, c), where c =
YK(p), by solving the equation

AK(p) = B−1
K (c) . (1)

Contribution of this paper. This paper presents meet-in-the-middle attacks
on block ciphers with 7, 15 and 23 rounds of XTEA. Our attacks are under the

3 The attack presented in Sect. 5 of this paper can also be seen as a meet-in-the-middle
attack, however the (partial) encryptions and decryptions cannot be performed over
all rounds, as the attacker only searches exhaustively over parts of the key. We
therefore use a technique similar to the partial matching technique of Sasaki and
Aoki. This very recent technique was successfully applied to several hash functions,
including MD4 [2], MD5 [20], HAS-160 [9] and SHA-2 [1].

2



Table 1. Key recovery attacks on XTEA where the time complexities are averages, if
explicitly stated in the original paper, average success probabilities are given as well
(KP: known plaintext, CP: chosen plaintext, RK: in a related-key setting)

Attack Ref. # Rounds Time Data Pr[Success]

• Attacks in the standard (single-key) setting

Meet-in-the-middle This paper 7 295.00 2 KPs 1− 2−33

Impossible differential [16] 14 285 262.5 CPs Not given

Differential [8] 15 2120 259 CPs Not given

Meet-in-the-middle This paper 15 295.00 3 KPs 1− 2−65

Truncated differential [8] 23 2120.65 220.55 CPs 0.969

Meet-in-the-middle This paper 23 2117.00 18 KPs 1− 2−1025

• Attacks in a related-key setting

Related-key truncated
differential

[13] 27 2115.15 220.5 RK-CPs 0.969

Related-key rectangle
(for 2108.21 weak keys)

[14] 34 231.94 262 RK-CPs Not given

Related-key rectangle [15] 36 2126.44 264.98 RK-CPs 0.63

Related-key rectangle
(for 2110.67 weak keys)

[15] 36 2104.33 263.83 RK-CPs 0.80

Related-key [3] 37 2125 263 RK-CPs Not given

Related-key (for 2107.5

weak keys)
[3] 51 2123 263 RK-CPs Not given

standard setting, giving the attacker less freedom than under a related-key set-
ting. In Table 1, we see that there is no attack on 23 or more rounds of XTEA,
that is better than ours given the standard setting. Furthermore, each of our
attacks requires only a few known plaintexts, whereas every attack listed in Ta-
ble 1 requires many chosen plaintexts.

The Linux kernel not only includes XTEA, but also a variant called XETA [7].
The cipher XETA resulted from a bug in the C implementation of XTEA, where
higher precedence was incorrectly given to exclusive-OR over addition in the
round function. From this paper, it is easy to verify that all our results to XTEA
directly apply to XETA as well. This is because our attacks exploit weaknesses
in the key schedule, which is the same for both XTEA and XETA. To the best
of our knowledge, this paper is the first to give cryptanalysis results on XETA.

Organization. This paper is organized as follows. Section 2 lists the notation
and convention that we follow. The description of XTEA is provided in Sect. 3.
Our main observation is presented in Sect. 4 and it is developed into an attack
on 15-round XTEA in Sect. 5. Here, we also provide other sets of 15 rounds
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that could be similarly attacked. Section 6 describes our attack on 23 rounds on
XTEA and provides other sets of 23 rounds that could be attacked in a similar
way. Section 7 concludes the paper and provides an interesting open problem.
In Appendix A, we show which countermeasures can be introduced to XTEA
to prevent all the attacks in this paper. The 23-round attack is illustrated in
Appendix B.

2 Notation and Convention

The notation used in this paper is listed in Table 2.

Table 2. Notation

Symbol / Notation Meaning

⊞ Addition modulo 232

⊕ Exclusive-OR

≪ Left shift

≫ Right shift

|| Concatenation

⌊x⌋ maxy∈Z(y ≤ x), Z is the set of integers

LSB Least significant bit

MSB Most significant bit

[i] Select bit i, i = 0 is the LSB

[j . . . i] Select bits k where j ≥ k ≥ i, k = 0 is the LSB

0k Concatenation of k times the string ‘0’

3 Description of XTEA

The block cipher XTEA has block size of 64 bits and key size of 128 bits. It uses
a 64-round Feistel network (see Fig. 1). The F -function of the Feistel network
(see Fig. 2) takes a 32-bit input x and produces a 32-bit output as:

F (x) = ((x≪ 4)⊕ (x≫ 5)) + x . (2)

The 128-bit key K of XTEA is divided into four 32-bit subkeys K0, . . . ,K3. At
every round, one of the 4 subkeys is selected according to a key schedule. A
constant δ = ⌊(

√
5− 1) · 231⌋ is defined, derived from the golden ratio. Two bits

from a different multiple of δ are used at every round as the index of the subkey.
The 32-bit subkey αt used in round t, where 1 ≤ t ≤ 64, is chosen from the set
{K0,K1,K2,K3} according to the following rule:

αt ←
{

Kδt[1...0] if t is odd ,

Kδt[12...11] if t is even ,
(3)
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where

δt =

⌊

t

2

⌋

δ, 1 ≤ t ≤ 64 . (4)

The 64-bit input to round t of XTEA consists of two 32-bit parts Lt−1 and Rt−1

(see Fig. 1). For round 1, the plaintext p is used as input: (L0 ‖ R0) ← p. The
input for round t + 1 is computed recursively from the input to round t as given
by:

Lt ← Rt−1 , (5)

Rt ← Lt−1 ⊞ ((δt ⊞ αt)⊕ F (Rt−1)) , (6)

where αt is selected according to (3). For reference, we also list the subkeys used
in every round in Table 3.

The ciphertext c of XTEA is produced by concatenating the two parts ob-
tained after the 64th round: c← L64 ‖ R64.

Finally, we note that in the description above by round we mean a Feistel

round. This is not to be confused with the term cycle used in the original proposal
of XTEA [17]. A cycle is equivalent to two Feistel rounds. Therefore XTEA has
64 rounds or 32 cycles.

Table 3. Subkeys used in XTEA

Rounds Subkey used

1, 8, 9, 10, 17, 18, 20, 25, 30, 33, 40, 41, 49, 50, 57, 60 K0

3, 6, 11, 16, 19, 26, 27, 28, 35, 36, 38, 43, 46, 48, 51, 58, 59 K1

4, 5, 13, 14, 21, 24, 29, 34, 37, 44, 45, 53, 54, 56, 61, 64 K2

2, 7, 12, 15, 22, 23, 31, 32, 39, 42, 47, 52, 55, 62, 63 K3

4 Motivational Observation

We begin by observing that the subkey K2 is not used in rounds 6–12. For the
remainder of this section, let K ← (K0,K1,X,K3), where X can be any 32-bit
value, as subkey K2 is irrelevant in the analysis. Given one plaintext-ciphertext
pair (p0, c0), with each key guess, the attacker checks whether

E
(6...12)
K (p0) = c0 , (7)

where E
(6...12)
K denotes the 7-round (rounds 6–12) encryption using the key K. At

first glance, it may appear that 1 KP is sufficient. However, it is to be noted that
the key space (296 keys K) is larger than the ciphertext space (264 ciphertext
blocks).
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Lt−1 Rt−1δt

αt

F

Lt Rtδt+1

αt+1

F

Lt+1 Rt+1

Fig. 1. The Feistel structure of XTEA showing two rounds

≪ 4

F (x) x

≫ 5

Fig. 2. The function F used in the round function of XTEA

We now show that obtaining a second KP (p1, c1) is sufficient for an attack
with an average time complexity of 295.00 7-round encryptions and an average
success probability of 1− 2−33. The attacker iterates over the 2k keys K, where
k = 96. For every candidate key K, (7) is tested using the first KP. If this
equality is satisfied, the second KP is used to check

E
(6...12)
K (p1) = c1 . (8)

If either (7) or (8) is not satisfied, the candidate key K is incorrect and can be
sieved. The approximate number of plaintext-ciphertext pairs that are needed
can also be estimated from Shannon’s unicity distance [21].

We make the reasonable assumption throughout this paper, that every block
cipher we consider has perfect confusion and diffusion properties [21]. If either the
plaintext or the key, or both are changed, it is assumed that the corresponding
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ciphertext will be generated uniformly at random, independent from previously
obtained ciphertexts.

Under this assumption, each of the 64-bit conditions that result from (7)
and (8) is satisfied with probability 2−64. All time complexities are stated as the
number of equivalent encryptions of the reduced-round block cipher.

The average success probability can be calculated as follows. The two 64-bit
conditions are simultaneously satisfied with probability 2−2·64 = 2−128. We can
therefore eliminate a wrong key with probability 1 − 2−128. Assume that key i
is the correct key, where 0 ≤ i < 2k. It will be output by the algorithm if all
previous keys are eliminated. This happens with probability (1 − 2−128)i. The
correct key can be located anywhere among the list of 2k candidate keys with
equal probability. Therefore, the average success probability is

2−k ·
2k−1
∑

i=0

(1− 2−128)i = 2128−k · (1− (1− 2−128)2
k

) ≈ 2128−k · (1− e−2k−128

)

≈ 1− 2−33 . (9)

The approximations result from using the first and the second order Taylor
approximations of ex around 0. We now calculate the time complexity of the
attack. For a candidate key K to be determined as wrong, the expected number
of trials is 1 + 2−64. This is because for every key, (7) is always checked, and for
2−64 keys (8) is checked as well. If the candidate key is correct, two encryptions
are always performed. As the correct key can be located anywhere in the list of
2k candidates keys with equal probability, the average number of encryptions of
the algorithm is

2−k ·
2k−1
∑

i=0

(

i · (1 + 2−64) + 2
)

= 2−1 · (1 + 2−64) · (2k − 1) + 2 ≈ 295.00 . (10)

From Table 3, we obtain several other 7-round block ciphers that can be
attacked in a similar way. Table 4 lists all such ciphers. Finally, we note that for

Table 4. All 7-round attacks; each attack requires 2 KPs and on average 295.00 7-round
encryptions for an average success probability of 1− 2−33

Cipher consisting of XTEA rounds Unused subkey

6–12 K2

24–30 K3

42–48 K0

46–52 K2

n = 0 and n = 1 respectively, one can replace both (7) and (8) with

E
(6...r−1)
K (pn) = D

(r...12)
K (cn) , (11)
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where r ∈ {6, . . . , 12}, E
(6...5)
K (pn) = pn, and D

(r...12)
K denotes (13-r)-round

(rounds r–12) decryption using the key K. Therefore, what we essentially con-
structed above can be viewed as meet-in-the-middle attacks. In (11), the value
of r determines the subkeys that are required for encryption and decryption.

5 Attacks on 15 Rounds of XTEA

The attack described in Sect. 4 on rounds 6–12, can be extended to rounds 6–
20 as follows. First, the attacker performs a meet-in-the-middle attack, where
(partial) encryptions and decryptions cannot be performed over all rounds, the
attacker only exhaustively searches over part of the key. From the remaining
rounds, however, the number of possibilities for the full key is reduced. Only
three known plaintexts (pn, cn), 0 ≤ n < 2 are required for the attack.

Let us now split a reduced-round XTEA block cipher into outer rounds and
inner rounds. In the outer rounds, one particular subkey is not used, whereas
the inner rounds use only this subkey. The attack is described for rounds 6–20.
As can be seen from Table 3, the outer rounds (6–12) and (15–20) do not involve
K2, whereas the two inner rounds (13–14) use only K2.

By encrypting plaintext p0 from round 6 to round 12 (i.e., until the beginning
of round 13) and decrypting the corresponding ciphertext c0 for 6 rounds starting
backwards from round 20, we obtain the subkeys used in the inner rounds.
They are denoted as K

′

2 and K
′′

2 for inner rounds 13 and 14 respectively. Then,
the attacker checks whether K

′

2 = K
′′

2 . This can be understood from Fig. 1.
Therefore, not the ciphertext values (as in Sect. 4), but the key values “meet
in the middle”. To the best of our knowledge, such an approach has not been
described in previous literature.

If K
′

2 6= K
′′

2 , the candidate key of (K0,K1,K3) cannot be correct, and the
attacker proceeds to the next candidate key. Otherwise, the candidate key is
extended to (K0,K1,K2, K3), where K2 = K

′

2 = K
′′

2 . Then, the meet-in-the-
middle attack is performed as described in Sect. 4. That is, a plaintext is en-
crypted with candidate keys (K0,K1,K2, K3), to check which of the computed
ciphertexts agrees with the actual (corresponding) ciphertext. For the 15-round
attack, it is sufficient to use two additional known plaintexts (p1, c1) and (p2, c2).

The average success probability can be calculated as follows. Using (p0, c0) a
32-bit condition is obtained when K

′

2 = K
′′

2 is checked. Then, (p1, c1) and (p2, c2)
each gives an additional 64-bit condition. A wrong key will pass these tests with

probability4 2−32 ·
(

2−64
)2

= 2−160. Thus, with probability 1 − 2−160, a wrong
key is eliminated. Assume that i is the correct key, where 0 ≤ i < 2k. It will be
output by the algorithm if all previous keys are eliminated. This happens with
probability (1−2−160)i. The correct key can be located anywhere among the list

4 If the texts obtained by encrypting p0 and decrypting c0, in the 13 outer rounds,
are uniformly distributed at random, then so are the subkeys K

′

2 and K
′′

2 . This fact,
explained in Appendix C, is explicitly stated here because the assumption of perfect
confusion and diffusion was made for ciphertexts, and not for subkeys.
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of 2k candidate keys with equal probability. The average success probability is

2−96 ·
296−1
∑

i=0

(1− 2−160)i = 2160−96 · (1− (1− 2−160)2
96

) ≈ 264 · (1− e−264

)

≈ 1− 2−65 . (12)

We now calculate the time complexity of the attack. For a candidate key
(K0,K1,K3) to be determined as wrong, the expected number of trials is 1 +
2−32 + 2−96. This is because for every candidate key (K0,K1,K3), the attacker
always checks whether K

′

2 6= K
′′

2 . For 2−32 and 2−96 candidate keys, the at-
tacker encrypts using the second and third known plaintext respectively. If the
candidate key is correct, the equivalent of three encryptions is always performed.
As the correct key can be located anywhere in the list of 296 candidates keys
with equal probability, the average number of (equivalent) encryptions of the
algorithm is

2−96 ·
296−1
∑

i=0

(

i · (1 + 2−32 + 2−96) + 3
)

= 2−1 · (1 + 2−32 + 2−96) · (296 − 1) + 3

≈ 295.00 . (13)

Finally, in Table 5, we provide a list of all 15-round block ciphers that can
be attacked with the same complexity.

Table 5. All 15-round attacks; each attack requires 3 KPs and on average 295.00

computations of the 15 rounds for an average success probability of 1− 2−65

Cipher consisting of XTEA rounds Inner rounds Inner round subkey

6–20 13,14 K2

16–30 22,23 K3

24–38 31,32 K3

34–48 40,41 K0

38–52 44,45 K2

42–56 49,50 K0

6 Attacks on 23 Rounds of XTEA

In this section, we extend the 15-round attack of Sect. 5 to 23 rounds. This 23-
round attack has an average time complexity of 2117.00 (equivalent) encryptions
and an average success probability of 1 − 2−1025. It requires only 18 known
(not chosen) plaintexts and corresponding ciphertexts. For the same number of
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rounds, both the time complexity and the data complexity of our attack are
much lower than those in [8]. Our attack is therefore the best attack on 23-
round XTEA so far in the standard setting, and the only attack requiring such
a low number of plaintexts and corresponding ciphertexts. We note that we
have optimized our attack to have the time complexity as low as possible. It is
possible to reduce the number of known plaintexts even further, but not without
increasing the time complexity of the attack.

The technique used is a meet-in-the-middle attack, similar to the attacks
in [4]. As in Sect. 5, the reduced-round XTEA block cipher is split into outer

rounds and inner rounds. In the outer rounds, one subkey is not used. The inner
rounds can contain any of the subkeys. Our attack applies to rounds 16–38 of
XTEA. Rounds 16–21 and 33–38 are the outer rounds, and do not involve subkey
K3. The inner rounds are rounds 22–32. The attack is a sieving attack, as the
correct key is found by eliminating keys that lead to contradictions. The attack
is given in Algorithm 1.

The k-bit key is recovered in two stages. First, the attacker exhaustively
searches over k1 bits of the key K and use m known plaintexts to check a one-
bit condition that each of the m plaintexts yield. These k1 bits consist of K0,
K1, K2, and the 21 least significant bits of K3. This one-bit condition, tested
in test keys 1(K), results from the following observation, also illustrated in
Appendix B. We see that, without using K3[31 . . . 21], the attacker can calculate

L27[0]← E
(16...27)
K (p)[0], and L

′

27[0]← D
(28...38)
K (c)[0]. As L27[0] = L

′

27[0] always
holds if the candidate key K is correct, a wrong key can be discarded if L27[0] 6=
L

′

27[0] . Note that only k1 bits of the candidate key K are used to test this
condition, as the remaining k2 bits do not affect this condition.

If none of the m plaintexts cause a key to be discarded, the attacker exhaus-
tively searches over the remaining k2 bits of key K in test keys 2(K). These
k2 bits are the 11 most significant bits of K3. In this stage, ℓ ≤ m of the m plain-

texts are reused. Now, (L27, R27) ← E
(16...27)
K (p) and (L

′

27, R
′

27) ← D
(28...38)
K (c)

are recalculated using the full key K. For efficiency, this calculation is sped up
by using stored values p⋆

n and c⋆
n for the outer rounds, and encrypting only the

inner rounds. Equations L27 = R27 and L
′

27 = R
′

27 yield only 63-bit conditions,
as L27[0] = L

′

27[0] was already tested. If both equations are satisfied for all ℓ
plaintexts, the candidate key K is output as the correct key, and the algorithm
halts.

Let us now determine the average time complexity and the average success
probability of Algorithm 1.

The algorithm succeeds if no wrong key K that passes all m + ℓ tests is
encountered before the correct key. How efficiently the attacker searches through
these candidate keys K, does not influence the success probability of Algorithm 1.
We therefore assume that the exhaustive search is over 2k keys, and then both
test keys 1(K) and test keys 2(K) are performed for each of these keys.

Each of the m plaintexts yields a one-bit condition in test keys 1(K), sat-
isfied randomly with a probability of 2−1. When ℓ ≤ m of these plaintexts are
reused in test keys 2(K), there is a condition on the 63 remaining bits, sat-
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Algorithm 1 Recovering the key of the 23-round XTEA block cipher consisting
of rounds 16–38; an average 2117.00 (equivalent) encryptions and 18 KPs are
required for an average success probability of 1− 2−1025

Require: m known plaintexts p0 . . . pm−1 and corresponding ciphertexts c0 . . . cm−1 .
Ensure: The output key K (of length k bits) is the correct key with probability

2m+63ℓ−k(1− e−2k−m−63ℓ

), where ℓ is chosen such that ℓ ≤ m.
1: global p⋆

0 . . . p⋆
m−1, c⋆

0 . . . c⋆
m−1 .

2: function test key 1(K) do
3: for n← 0 . . . m− 1 do
4: p⋆

n ← E
(16...21)
K (pn)

5: c⋆
n ← D

(33...38)
K (cn)

6: (L27, R27)← E
(22...27)
K (p⋆

n)

7: (L′
27, R

′
27)← D

(28...32)
K (c⋆

n)
8: if L27[0] 6= L′

27[0] then
9: return false

10: return true

11: function test key 2(K) do
12: for n← 0 . . . ℓ− 1 do
13: (L27, R27)← E

(22...27)
K (p⋆

n)

14: (L′
27, R

′
27)← D

(28...32)
K (c⋆

n)
15: if L27 6= L′

27 or R27 6= R′
27 then

16: return false

17: return true

18: for (K0, K1, K2)← (0 . . . 232 − 1, 0 . . . 232 − 1, 0 . . . 232 − 1) do
19: for K3[20 . . . 0]← 0 . . . 221 − 1 do
20: K ← (K0, K1, K2, 0

11 ‖ K3[20 . . . 0])†

21: if test key 1(K) then
22: for K3[31 . . . 21]← 0 . . . 211 − 1 do
23: if test key 2(K) then
24: output K and halt
†Since the 11 bits K3[31 . . . 21] do not affect L27[0] or L′

27
[0], one can have any value β from the set

{1, . . . , 211 − 1} in place of 011. We have used 011 for ease of understanding how the attack works.

isfied randomly with a probability of 2−63. A wrong key will be detected if at
least one of the m + ℓ tests fail. This eliminates a wrong key with a probability
of 1− 2−m · 2−63ℓ. Assume that i is the correct key, where 0 ≤ i < 2k. Then, it
will be output by the algorithm if all previous candidate keys lead to contradic-
tions. This happens with probability (1− 2−m · 2−63ℓ)i. As the correct key can
be located anywhere in the list of 2k candidate keys with equal probability, the
average success probability of the algorithm is

2−k ·
2k−1
∑

i=0

(1− 2−m · 2−63ℓ)i = 2m+63ℓ−k · (1− (1− 2−m−63ℓ)2
k

)

≈ 2m+63ℓ−k · (1− e−2k−m−63ℓ

) . (14)
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We now calculate the time complexity of the attack. Let i and j (where
0 ≤ i < 2k1 and 0 ≤ j < 2k2) be parts of the correct key Kc where i =
(Kc

0,K
c
1,K

c
2,K

c
3[20 . . . 0]) and j = Kc

3[31 . . . 21]. Any 117-bit key (K0,K1,K2,K3

[20 . . . 0]), tested in test keys 1(K) before the correct key, passes test keys 1(K)

with probability 2−m. Therefore, of the i 117-bit keys tested before the correct
key, i ·2−m keys are expected to pass test keys 1(K). For each of these i ·2−m

keys, test keys 2() is performed 2k2 times. Summarizing,

– the attacker performs an expected i · T1 23-round computations, where T1

is the expected number of 23-round computations for a wrong key under
test keys 1();

– the attacker additionally performs an expected i · 2−m · 2k2 · T2 23-round
computations, where T2 is the expected number of 23-round computations
for a wrong key under test keys 2().

It is easy to see that

T1 ,

m−1
∑

i=0

2−i . (15)

To compute T2, note that test keys 2() only encrypts the 11 inner rounds
again, and uses stored values for (partial) encryptions and decryptions of the
outer rounds. This is equivalent to 11/23 encryptions of the 23-round block
cipher and therefore

T2 ,
11

23
·

ℓ−1
∑

j=0

2−63j . (16)

For the correct (partial) key i, the number of steps under test keys 1() is m.
To determine the remaining part of the correct 128-bit key Kc, the attacker
performs an expected j · T2 + (11/23) · ℓ 23-round computations, where

1. j·T2 is the expected number of 23-round computations, under test keys 2(),
for all the j wrong (partial) keys preceding key j;

2. ℓ is the number of 11-round steps under test keys 2() for the correct key
j.

As the correct key j can take any value in the set {0, . . . , 2k2−1}, the average
number of 23-round computations corresponding to the correct key i, is

2−k2 ·
2k2−1
∑

j=0

(

j · T2 +
11

23
· ℓ

)

. (17)

As the correct key i can take any value in the set {0, . . . , 2k1−1}, the average
number of 23-round computations in total is

2−k1 ·
2k1−1
∑

i=0



i · T1 + m + i · 2−m · 2k2 · T2 + 2−k2 ·
2k2−1
∑

j=0

(

j · T2 +
11

23
· ℓ

)



(18)
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The derivation of (18) will be more clear from Fig. 3 in Appendix B.

We now choose the parameters m and ℓ for the attack on rounds 16–38.
From (18), we find that we cannot lower the average time complexity below
2117.00. Therefore, we choose m and ℓ such that we have the lowest number of
known plaintexts, and the highest success probability for this particular time
complexity. Setting m = ℓ = 18, we find that 18 KPs are sufficient, and that
the corresponding success probability using (14) is 1 − 2−1025. Note that the
success probability of exhaustive search over the full k-bit key using 18 KPs
has the same success probability. This shows that all KPs are optimally used
in our attack from an information theoretic point of view [21]. Note that the
number of KPs can still be lowered further, but then the time complexity must
increase. This can be done by either increasing ℓ (which would make the second
stage dominate in the attack), or by increasing k1 (and thus perform the meet-
in-the-middle on more than one bit).5 We do not consider such options, as the
number of KPs in our attack is already low enough for a practical attack. The
time complexity, however, is still beyond reach with current hardware. Each of
these attacks requires only negligible memory (about 4 · 64 · 18 = 212.17 bits to
store (pn, cn) and (p⋆

n, c⋆
n) values).

As shown in Table 6, a total of 12 variants of the XTEA block cipher can be
attacked, where each variant consists of 23 rounds. For rounds 34–56, the attack
works in exactly the same way as for 16–38, and has the same complexities. The
10 other attacks require that k1 = 122: the exhaustive search is now over all but
the 6 most significant bits of one subkey in Algorithm 1, in order to obtain a
condition on one bit to perform the meet-in-the-middle. The middle bit involved
in this condition is given as well in Table 6.

Using (18), we calculate the time complexity for the 10 attacks that use 12
or 13 inner rounds. The lowest possible average time complexity for our attack
strategy is 2122.00. For this time complexity, the best parameters are m = ℓ = 13.
We then obtain an average success probability of 1−2−705, using 13 KPs. Again,
each of these attacks requires only negligible memory (about 211.70 bits to store
(pn, cn) and (p⋆

n, c⋆
n) values).

7 Conclusions and Open Problems

This paper presented several meet-in-the-middle attacks on 7-, 15- and 23-round
XTEA. The main highlight of our attacks is that they require very few known
plaintexts (not more than 18) as opposed to previously reported attacks (the
best of these attacks requires 220 chosen plaintexts). Furthermore, our attacks
use different approaches - the 7- and 23-round attacks use a straightforward
meet-in-the-middle approach; in the 15-round attacks, the meet-in-the-middle
corresponds to inner round subkeys rather than intermediary text values.

5 In the attack, one bit in the middle is independent of 11 key bits. Two bits in the mid-
dle are simultaneously independent of fewer than 11 key bits, thereby corresponding
to a larger k1.
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Table 6. All 23-round attacks

Total rounds Inner rounds Middle bit Unused key bits # Inner rounds

16–38 22–32 L27[0] K3[31 . . . 21] 11 rounds

34–56 40–50 L45[0] K0[31 . . . 21] 11 rounds

6–28 13–24 L19[0] K2[31 . . . 26] 12 rounds

8–30 12–23 L18[0] K3[31 . . . 26] 12 rounds

24–46 31–42 L37[0] K3[31 . . . 26] 12 rounds

26–48 30–41 L36[0] K0[31 . . . 26] 12 rounds

30–52 34–45 L40[0] K2[31 . . . 26] 12 rounds

42–64 49–60 L55[0] K0[31 . . . 26] 12 rounds

20–42 26–38 L32[0] K1[31 . . . 26] 13 rounds

38–60 44–56 L50[0] K2[31 . . . 26] 13 rounds

2–24 8–20 L14[0] K0[31 . . . 26] 13 rounds

12–34 16–28 L22[0] K1[31 . . . 26] 13 rounds

Each of our attacks on 23-round XTEA requires less time (2117.00 23-round
computations) than the previously best-known attack on 23 rounds (2120.65 23-
round computations) in the standard setting. The time complexities of the 7-
and 15-round attacks are also significantly better than exhaustive key search,
with each of these attacks requiring about 295 time.

Our attacks apply to XETA as well, a close variant of XTEA that is also
implemented in the Linux kernel. We are unaware of any other published crypt-
analysis results on XETA.

An interesting observation from one of the anonymous reviewers, is that there
is also a 15-round attack on rounds 2–16. In this case, subkey K0 is used con-
secutively in the inner rounds 8, 9 and 10, but not elsewhere. By exhaustively
searching over K1,K2,K3 and six of the least significant bits of K0, we can
perform the same meet-in-the-middle attack that is described in Sect. 6. How-
ever, this attack has a higher time and data complexity than the other 15-round
attacks of Sect. 5, for a comparable success probability.

When constructing the 23-round attack in Sect. 6, we found that for any
number of inner rounds (where all subkeys can be used) up to 16, there is
no corresponding attack on more than 23 rounds. However, if the number of
inner rounds can be increased to 17, this leads to a 29-round attack. All such
29-round attacks are listed in Table 7. We present the cryptanalysis of these
29-round XTEA block ciphers as an interesting open problem.
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Leurent, Matt Robshaw and Aleksander Wittlin for their useful comments and
suggestions. Part of this work was performed at the Cryptanalysis of Light-
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Table 7. All reduced-round XTEA block ciphers for which a 29-round attack consists
of 17 inner rounds

Total rounds Inner rounds Subkey containing unused key bits

11–39 27–33 K0

15–43 21–37 K2

29–57 35–51 K1

33–61 40–56 K3

II project. The authors would like to thank the anonymous reviewers for their
constructive comments as well.

References

1. K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, L. Wang, “Preimages for Step-Reduced
SHA-2,” ASIACRYPT 2009 (M. Matsui, ed.), vol. 5912 of LNCS, pp. 578–597,
Springer-Verlag, 2009.

2. K. Aoki, Y. Sasaki, “Preimage Attacks on One-Block MD4, 63-Step MD5 and
More,” SAC 2008 (R. Avanzi, L. Keliher, F. Sica, eds.), vol. 5381 of LNCS, pp. 103–
119, Springer-Verlag, 2009.

3. C. Bouillaguet, O. Dunkelman, G. Leurent, P.-A. Fouque, “Another Look at Com-
plementation Properties,” FSE 2010 (S. Hong, T. Iwata, eds.), vol. 6147 of LNCS,
pp. 347–364, Springer-Verlag, 2010.

4. D. Chaum, J.-H. Evertse, “Cryptanalysis of DES with a Reduced Number
of Rounds: Sequences of Linear Factors in Block Ciphers,” CRYPTO 1985

(H.C. Williams, ed.), vol. 218 of LNCS, pp. 192–211, Springer-Verlag, 1986.
5. W. Diffie, M.E. Hellman, “Exhaustive Cryptanalysis of the NBS Data Encryption

Standard,” Computer, vol. 10(6), pp. 74–84, IEEE Computer Society Press, 1977.
6. O. Dunkelman, G. Sekar, B. Preneel, “Improved Meet-in-the-Middle Attacks on

Reduced-Round DES,” INDOCRYPT 2007 (K. Srinathan, C. Pandu Rangan,
M. Yung, eds.), vol. 4859 of LNCS, pp. 86–100, Springer-Verlag, 2007.

7. A. Grothe, “Kernel v2.6.14 tea.c,” Linux Headquarters, 2004, available at
http://www.linuxhq.com/kernel/v2.6/14/crypto/tea.c.

8. S. Hong, D. Hong, Y. Ko, D. Chang, W. Lee, S. Lee, “Differential Cryptanalysis
of TEA and XTEA,” ICISC 2003 (J.I. Lim, D.H. Lee, eds.), vol. 2971 of LNCS,
pp. 402–417, Springer-Verlag, 2004.

9. D. Hong, B. Koo, Y. Sasaki, “Improved Preimage Attack for 67-Step HAS-160,”
ICISC 2009 (D. Lee, S. Hong, eds.), vol. 5984 of LNCS, pp. 332–348, Springer-
Verlag, 2009.

10. J.-P. Kaps, “Chai-Tea, Cryptographic Hardware Implementations of xTEA,” IN-

DOCRYPT 2008 (D.R. Chowdhury, V. Rijmen, A. Das, eds.), vol. 5365 of LNCS,
pp. 363–375, Springer-Verlag, 2008.

11. J. Kelsey, B. Schneier, D. Wagner, “Key-Schedule Cryptoanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES,” CRYPTO 1996 (N. Koblitz, ed.), vol. 1109 of
LNCS, pp. 237–251, Springer-Verlag, 1996.

12. J. Kelsey, B. Schneier, D. Wagner, “Related-key cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2, and TEA,” ICICS 1997 (Y. Han,

15



T. Okamoto, S. Qing, eds.), vol. 1334 of LNCS, pp. 233–246, Springer-Verlag,
1997.

13. Y. Ko, S. Hong, W. Lee, S. Lee, J.-S. Kang, “Related-Key Differential Attacks on
27 Rounds of XTEA and Full-Round GOST,” FSE 2004 (B.K. Roy, W. Meier,
eds.), vol. 3017 of LNCS, pp. 299–316, Springer-Verlag, 2004.

14. E. Lee, D. Hong, D. Chang, S. Hong, J. Lim, “A Weak Key Class of XTEA for a
Related-Key Rectangle Attack,” VIETCRYPT 2006 (P.Q. Nguyen, ed.), vol. 4341
of LNCS, pp. 286–297, Springer-Verlag, 2006.

15. J. Lu, “Related-key rectangle attack on 36 rounds of the XTEA block cipher,”
International Journal of Information Security, vol. 8(1), pp. 1–11, Springer-Verlag,
2009, also available at http://jiqiang.googlepages.com/IJIS8.pdf.

16. D. Moon, K. Hwang, W. Lee, S. Lee, J. Lim, “Impossible Differential Cryptanalysis
of Reduced Round XTEA and TEA,” FSE 2002 (J. Daemen, V. Rijmen, eds.),
vol. 2365 of LNCS, pp. 49–60, Springer-Verlag, 2002.

17. R.M. Needham, D.J. Wheeler, “Tea extensions,” technical report, Com-
puter Laboratory, University of Cambridge, October 1997, available at
http://www.cix.co.uk/ klockstone/xtea.pdf.

18. R.M. Needham, D.J. Wheeler, “Correction to xtea,” technical report, Com-
puter Laboratory, University of Cambridge, October 1998, available at
http://www.movable-type.co.uk/scripts/xxtea.pdf.

19. M.-J. Saarinen, “Cryptanalysis of Block TEA,” un-
published manuscript, October 1998, available at
http://groups.google.com/group/sci.crypt.research/msg/f52a533d1e2fa15e.

20. Y. Sasaki, K. Aoki, “Finding Preimages in Full MD5 Faster Than Exhaustive
Search,” EUROCRYPT 2009 (A. Joux, ed.), vol. 5479 of LNCS, pp. 134–152,
Springer-Verlag, 2009.

21. C.E. Shannon, “Communication Theory of Secrecy Systems,” Bell System Techni-

cal Journal, vol. 28-4, pp. 656–715, 1949.
22. M. Steil, “17 Mistakes Microsoft Made in the Xbox Secu-

rity System,” Chaos Communication Congress 2005, available at
http://events.ccc.de/congress/2005/fahrplan/events/559.en.html.

23. D.J. Wheeler, R.M. Needham, “TEA, a Tiny Encryption Algorithm,” FSE 1994

(B. Preneel, ed.), vol. 1008 of LNCS, pp. 363–366, Springer-Verlag, 1994.

A Countermeasures

The attacks in this paper are made possible because a particular subkey Ki is
often not used for a large number of rounds. To prevent against the attacks in
this paper, we propose to use each of the subkeys K0,K1,K2,K3 once every
four rounds, in a random order. This countermeasure does not prevent trivial
meet-in-the-middle attacks on 6 rounds. Note that the subkeys cannot repeat in
a cyclic manner, as we want to avoid the possibility of slide attacks.

B Illustration of the Attack on Rounds 16–38

In Fig. 4, we illustrate the 23-round attack of Sect. 6. The attack is on rounds
16–38, and uses 11 inner rounds (22–32). Grey boxes represent bits that do not
depend on the value of K3[31 . . . 21]. In Fig. 3, we illustrate Algorithm 1 from
the point of view of computation of its time complexity.
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Fig. 3. Attack on rounds 16–38 using Algorithm 1: the tables (not stored in memory)
denote the two stages of Algorithm 1 and the shaded 128 bits denote the correct 128-bit
key; for a wrong key γ, test keys 2() is performed 211 times

C Randomness of the Inner-Round Subkeys in the

15-Round Attacks

Here, we show that if the texts obtained by encrypting p0 and decrypting c0 in
the 13 outer rounds (of a 15-round attack) are uniformly distributed at random,
then so are the subkeys in the inner rounds. As there are only two inner rounds,
the problem may be viewed as follows. In Fig. 1, if Lt−1||Rt−1 and Lt+1||Rt+1

are uniformly distributed at random, then we need to show that αt and αt+1

are also uniformly distributed at random. Henceforth, the term random means
uniformly distributed at random.

Since F is a bijection, the output of F is random given Rt−1 is random. We
know that modular addition (or subtraction) or exclusive-OR of two random
values results in a random value. Given this, since Rt = Lt+1 and Lt+1||Lt−1 is
random, from Fig. 1 we obtain that δt ⊞ αt is random. As δt is a constant, αt is
random. By similar arguments, it is easily seen that αt+1 is also random.
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Fig. 4. 23-round attack (rounds 16–38), using 11 inner rounds (the grey boxes represent
bits that do not depend on the value of K3[31 . . . 21])
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