
1

Collisions for Schnorr’s Hash Function FFT-Hash Presented

at Crypto ’91

Joan Daemen, Antoon Bosselaers,

René Govaerts and Joos Vandewalle

Katholieke Universiteit Leuven, Laboratorium ESAT,

Kardinaal Mercierlaan 94, B–3001 Heverlee, Belgium.

Abstract

A method is described to generate collisions for the hash function FFT-Hash that

was presented by Claus Schnorr at Crypto ’91. A set of colliding messages is given

that was obtained by this method.

1 Introduction

In the Rump Session of Crypto ’91 Claus Schnorr presented FFT-Hash. This is

a function that hashes messages of arbitrary length into a 128 bit hash value. It

consists of two rounds, where every round is the combination of a Fast Fourier

Transform over GF(216+1) and a nonlinear recursion. It was claimed that producing

a pair of messages that yield the same hashvalue is computationally infeasible. We

have written a program that outputs a set of 384 bit messages that all have the

same hash value for FFT-Hash. The CPU-time consumed is of the order of a few

hours. An optimized version of the program is expected to take only a few minutes

on a modern PC. The first collision was produced on October 3rd ’91.

2 Description of FFT-Hash

Padding: The message is padded with a single “1” followed by a suitable number

of “0” bits followed by the binary representation of its original length. The padded

message can then be seen as the concatenation of a number of 128-bit blocks: M0 ‖

M1 . . . ‖Mn−1.

Appeared in Advances in Cryptology – ASIACRYPT 1991, Lecture Notes in Computer Science 739, H. Imai,
T. Matsumoto, and R. L. Rivest (eds.), Springer-Verlag, pp. 477–480, 1993.

c©1993 Springer-Verlag

2

Algorithm for the hash function h: Hi = g(Hi−1 ‖ Mi−1) for i = 1, . . . , n.

Hi ∈ {0, 1}
128 and initial value H0 = 0123 4567 89ab cdef fedc ba98 7654 3210

(hex.). The output of h(M) = Hn.

Algorithm for the function g: Let p = 216 + 1. The input to g is split up into

16 components (e0, . . . , e15) with each component ei consuming 16 bits. These ei
are treated as representations of integers modulo p. Define the FFT-transformation

FT8(a0, . . . , a7) = (b0, . . . , b7) as

bi =
7∑

j=0

24ijaj mod p for i = 0, . . . , 7 (1)

1. (e0, e2, . . . , e14) = FT8(e0, e2, . . . , e14) This step is called a FFT-step

2. FOR(i=0 ; i<16 ; i++) ei = ei + ei−1ei−2 + eei−3
+ 2i mod p

All indices are taken modulo 16. This step is called a recursion step.

3. Second round: repeat step 1 and 2

The output of g is the 128-bit string e8 ‖ e9 . . . ‖ e15 where all occurrences of

p− 1 = 216 are substituted by 0.

3 Weaknesses of FFT-Hash

1. The FFT step only affects the components with even index. For odd-indexed

components no diffusion takes place.

2. The linearity of the FFT step can be used to impose certain values upon a number

of output components. If for certain subsets of no more than 8 components, belong-

ing to either the output or the input, the values are fixed, values for the remaining

components can be computed such that equation 1 holds. This computation involves

linear algebra alone.

3. The diffusion resulting from the recursion step can be completely eliminated by

imposing 0 values to certain components. Suppose (e0, . . . , e15) is the 16-tuple that

has just undergone a recursion step. Suppose e5 = e7 = 0. Suppose also that e6

was never addressed in the indirect indexing term eei−3
, hence ei−3 6= 6 (mod 16)

for all i at the moment they are used. Then the 12 MSB bits of e6 only appear

in the calculation for the new value of e6. This can easily be seen because when

e5 = e7 = 0 a product term ei−1ei−2 containing e6 must be zero. Because the 12

MSB bits of e6 can be altered without affecting the outcome of other components

when the recursion is applied, e6 will be called isolated. This can be applied to any

component. Hence isolation of a component in a recursion step requires that the

Appeared in Advances in Cryptology – ASIACRYPT 1991, Lecture Notes in Computer Science 739, H. Imai,
T. Matsumoto, and R. L. Rivest (eds.), Springer-Verlag, pp. 477–480, 1993.

c©1993 Springer-Verlag

3

two neighboring components are 0 and that it is not addressed in the term eei−3
for

any i.

4 The Attack

The attack is based on the fact that it is possible to isolate a component during all

four steps of g. The colliding messages consist of 3 blocks: M0,M1 andM2. All effort

goes into the search for appropriate M1 and M2 values. The attack is probabilistic.

A subset of messagebits are given random values thereby fixing the remaining bits

through a number of imposed relations. Starting from H1 = g(H0 ‖M0) we have:

1. Calculation of M1. The values are chosen in a way that the second component

of M1 (= e9) has a maximum probability of staying isolated throughout the

calculation of g. Certain changes in the 12 MSB bits of this component affect

the intermediate hash value H2 only in the second component. On the average

223 different H1, obtained by trying different M0 values have to be tested. Only

about 211 of these survive a first check. For each of these remaining M1 values

215 trials have to be performed by varying φ (see figure).

2. Calculation of M2. The values of M2 are chosen in such a way that the second

component of H2 (= e1) has maximum probability of being isolated and thus

does not affect H3. About 2
22 different values of φ1 and φ2 have to be tried.

The figure illustrates the internal relations during the hashing process of the col-

liding messages. Q indicates the component that is isolated throughout the whole

calculation.

The first result obtained by this method was a set of 805 colliding messages (in

hexadecimal notation)

00a1 0000 0000 0000 0000 0000 000c 5b18

9156 XXXd 9e89 67e8 35f8 e2b0 12ec 26c0

570b 06ee ba21 8da5 6ec4 c27e 5d5d e6be

where XXX ranges over 1b5 to 4d9 that all hash to

527d c019 d8cb 1d92 162b f04c cfff 26c6

References

[1] C Schnorr, FFT-Hash, An Efficient Cryptographic Hash Function,Rump

Session Crypto ’91.

Appeared in Advances in Cryptology – ASIACRYPT 1991, Lecture Notes in Computer Science 739, H. Imai,
T. Matsumoto, and R. L. Rivest (eds.), Springer-Verlag, pp. 477–480, 1993.

c©1993 Springer-Verlag

4

An arrow from ei to ej means eei
= ej or ei = j (mod 16)

Boxes containing a constant indicate the value that is imposed upon the component

Boxes containing a greek letter indicate variables that are isolated (denoted by) until they are
used (as indicated in the down left corner) to impose a certain value to a component

A ? in the down left corner indicates that we depend upon luck (prob: 2−16)

indicates that the component is fixed by an FFT relation

An empty box denotes a component that is fixed by initial values and/or internal relations

H1
︷ ︸︸ ︷

M1
︷ ︸︸ ︷

Q α β φ

@@¡¡ª

−2−1 Q −29 α −211 β 0 φ

¡
¡
¡

¡¡µ

¡¡
¡
¡
¡µ

¡¡
¡
¡
¡µ

0 0β
Q 0 α 0 φ

Q α φ

¡¡
¡¡µ

0α
Q 0?

︸ ︷︷ ︸

H2

H2
︷ ︸︸ ︷

M2
︷ ︸︸ ︷

0 Q 0 γ δ ε

¡¡@@R ¡¡ª @@

−1 Q −22 φ2 γ φ1 δ 0 ε

0 Q 0 γ 0γ δ ε

¡¡ª @@

Q δ ε

0ε
Q 0δ

︸ ︷︷ ︸

H3

Figure 1: Schematic overview of the collisions of FFT-Hash. The state (e0, . . . , e15)
is depicted before and after every step.

Appeared in Advances in Cryptology – ASIACRYPT 1991, Lecture Notes in Computer Science 739, H. Imai,
T. Matsumoto, and R. L. Rivest (eds.), Springer-Verlag, pp. 477–480, 1993.

c©1993 Springer-Verlag

