
KATAN and KTANTAN — A Family of Small

and Efficient Hardware-Oriented Block Ciphers

Christophe De Cannière1, Orr Dunkelman1,2,�, and Miroslav Knežević1,��

1 Katholieke Universiteit Leuven
Department of Electrical Engineering ESAT/SCD-COSIC

and
Interdisciplinary Center for Broad Band Technologies

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
{christophe.decanniere,miroslav.knezevic}@esat.kuleuven.be

2 École Normale Supérieure
Département d’Informatique,

CNRS, INRIA
45 rue d’Ulm, 75230 Paris, France

orr.dunkelman@di.ens.fr

Abstract. In this paper we propose a new family of very efficient hard-
ware oriented block ciphers. The family contains six block ciphers divided
into two flavors. All block ciphers share the 80-bit key size and security
level. The first flavor, KATAN, is composed of three block ciphers, with
32, 48, or 64-bit block size. The second flavor, KTANTAN, contains the
other three ciphers with the same block sizes, and is more compact in
hardware, as the key is burnt into the device (and cannot be changed).

The smallest cipher of the entire family, KTANTAN32, can be imple-
mented in 462 GE while achieving encryption speed of 12.5 KBit/sec (at
100 KHz). KTANTAN48, which is the version we recommend for RFID
tags uses 588 GE, whereas KATAN64, the largest and most flexible can-
didate of the family, uses 1054 GE and has a throughput of 25.1 Kbit/sec
(at 100 KHz).

1 Introduction

Low-end devices, such as RFID tags, are deployed in increasing numbers each
and every day. Such devices are used in many applications and environments,
leading to an ever increasing need to provide security (and privacy). In order to
satisfy these needs, several suitable building blocks, such as secure block ciphers,
have to be developed.

The problem of providing secure primitives in these devices is the extremely
constrained environment. The primitive has to have a small footprint (where
any additional gate might lead to the solution not being used), reduced power

� This author was partially supported by the France Telecom Chaire.
�� This author is supported in part by IAP Programme P6/26 BCRYPT of the Belgian

State (Belgian Science Policy).

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 272–288, 2009.
c© International Association for Cryptologic Research 2009

KATAN and KTANTAN 273

consumption (as these devices either rely on a battery or on an external elec-
tromagnetic field to supply them the required energy), and with sufficient speed
(to allow the use of the primitive in real protocols).

The raising importance as well as the lack of secure and suitable candidates,
has initiated a research aiming to satisfy these requirements. The first candidate
block cipher for these devices was the DESL algorithm [19]. DESL is based on the
general structure of DES, while using a specially selected S-box. DESL has key
size of 56 bits and a footprint of 1848 GE. The second candidate for the mission
is the PRESENT block cipher [4]. PRESENT has an SP-Network structure, and
it can be implemented using the equivalent of 1570 GE. A more dedicated im-
plementation of PRESENT in 0.35μm CMOS technology reaches 1000 GE [20].1

The same design in 0.25μm and 0.18μm CMOS technology consumes 1169 and
1075 GE, respectively.

Some stream ciphers, such as grain [11] and trivium [6] may also be considered
fit for these constrained environments, with 1293 and 749 GE2 implementations,
respectively. However, some protocols cannot be realized using stream ciphers,
thus, leaving the issue of finding a more compact and secure block cipher open.

In this paper we propose a new family of block ciphers composed of two
sets. The first set of ciphers is the KATAN ciphers, KATAN32, KATAN48 and
KATAN64. All three ciphers accept 80-bit keys, and have a different block size
(n-bit for KATANn). These three block ciphers are highly compact and achieve
the minimal size (while offering adequate security). The second set, composed
of KTANTAN32, KTANTAN48, and KTANTAN64, realize even smaller block
ciphers in exchange for agility. KTANTANn is more compact than KATANn,
but at the same time, is suitable only for cases where the device is initialized with
one key that can never be altered, i.e., for the KTANTAN families, the key of
the device is burnt into the device. Thus, the only algorithmic difference between
KATANn and KTANTANn is the key schedule (which may be considered slightly
more secure in the KATANn case).

While in this paper we put emphasis on the smallest possible variants, it can be
easily seen that increasing the speed of the implementation is feasible with only a
small hardware overhead. Therefore, we provide more implementation results in
Appendix B. We implemented all six ciphers of the family using an fsc0l d sc tc
0.13μm family standard cell library tailored for UMC’s 0.13μm Low Leakage
process. We compare our results with previous constructions in Table 1. We note
here that some of the implementations achieve an amazingly low gate count due
to the number of GE per bit of memory used. This is the issue inherent not only
to the encryption algorithm, but also a matter of the technology that is used.
Thus, we give a detailed explanation addressing the possible bit representation.

1 Comparing to 0.13µm CMOS technology we note here that the physical size of the
chip (in µm2) is about 8 times bigger than the design with the same number of gate
equivalents in 0.13µm CMOS technology.

2 This work is a full-custom design implemented with C2MOS dynamic logic [16]. The
die size is equivalent to 749 standard CMOS logic NAND gates. The clock frequency
required for this solution is far from being suitable for constrained environments.

274 C. De Cannière, O. Dunkelman, and M. Knežević

Table 1. Comparison of Ciphers Designed for Low-End Environments (optimized for
size)

Cipher Block Key Size Gates per Throughput� Logic
(bits) (bits) (GE) Memory Bit (Kb/s) Process

AES-128 [8] 128 128 3400 7.97 12.4 0.35 µm
AES-128 [10] 128 128 3100 5.8 0.08 0.13 µm
HIGHT [12] 64 128 3048 N/A 188.25 0.25 µm
mCrypton [15] 64 64 2420 5 492.3 0.13 µm

DES [19] 64 56 2309† 12.19 44.4 0.18 µm
DESL [19] 64 56 1848† 12.19 44.4 0.18 µm
PRESENT-80 [4] 64 80 1570 6 200 0.18 µm
PRESENT-80 [20] 64 80 1000 N/A 11.4 0.35 µm

Grain [9] 1 80 1294 7.25 100 0.13 µm

Trivium [16] 1 80 749 2♦ 100‡ 0.35 µm

KATAN32 32 80 802 6.25 12.5 0.13 µm
KATAN48 48 80 927 6.25 18.8 0.13 µm
KATAN64 64 80 1054 6.25 25.1 0.13 µm

KTANTAN32 32 80 462 6.25 12.5 0.13 µm
KTANTAN48 48 80 588 6.25 18.8 0.13 µm
KTANTAN64 64 80 688 6.25 25.1 0.13 µm
� — A throughput is estimated for frequency of 100 KHz.
† — Fully serialized implementation (the rest are only synthesized).
‡ — This throughput is projected, as the chip requires higher frequencies.
♦ — This is a full-custom design using C2MOS dynamic logic.

We organize this paper as follows: In Section 2 we describe the design criteria
used in the construction of the KATAN family. Section 3 presents the building
blocks used in our construction as well as the implementation issues related to
them. In Sections 4 and 5 we present the KATAN and the KTANTAN families,
respectively. The security analysis results are given in Section 6. Several com-
partive tradeoffs concerning the implemtnation speed and size of the KATAN
and KTANTAN families are reported in Appendix B. Finally, we summarize our
results in Section 7.

2 Motivation and Design Goals

Our main design goal was to develop a secure 80-bit block cipher with as min-
imal number of gates as possible. Such ciphers are needed in many constrained
environments, e.g., RFID tags and sensor networks.

While analyzing the previous solutions to the problem, we have noticed that
the more compact the cipher is, a larger ratio of the area is dedicated for storing
the intermediate values and key bits. For example, in grain [11], almost all of
the 1294 gates which are required, are used for maintaining the internal state.
This phenomena also exist in DESL [19] and PRESENT [4], but to a lesser
degree. This follows two-fold reasoning: First, stream ciphers need an internal

KATAN and KTANTAN 275

state of at least twice the security level while block ciphers are exempt from
this requirement. Second, while in stream ciphers it is possible to use relatively
compact highly nonlinearity combining function, in block ciphers the use of S-
box puts a burden on the hardware requirements.

Another interesting issue that we have encountered during the analysis of
previous results is the fact that various implementations not only differ in the
basic gate technology, but also in the number of gate equivalents required for
storing a bit. In the standard library we have used in this work, a simple flip-flop
implementation can take between 5 and 12 GE. This, of course, depends on the
type of the flip-flop that is used (scan or standard D flip-flop, with or without
set/reset signals, input and output capacitance, etc). Typical flip-flops that are
used to replace a combination of a multiplexer and a flip-flop are, so called, scan
flip-flops of which the most compact version, in our library, has a size equivalent
to 6.25 GE. These flip-flops basically act as a combination of a simple D flip-flop
and a MUX2to1. Use of this type of flip-flops is beneficial both for area and
power consumption.

Here, we can notice that in PRESENT [4], the 80-bit key is stored in an area
of about 480 GE, i.e., about 6 GE for one bit of memory, while in DESL, the
64-bit state is stored in 780 GE (about 12 GE for a single bit). As we have
already discussed, this is related to many different factors such as the type of
flip-flops, technology, library, etc. Finally, we note that in some cases (which do
not necessarily fit an RFID tag due to practical reasons) it is possible to reduce
the area required for storing one memory bit to only 8 transistors (i.e., about
2 GE) [16]. This approach achieves a much better comparison between different
implementations, as usually changing the memory technology we can relatively
easily counter the effects of implementers knowledge (or lack of), and discuss
the true size of the proposed algorithm.

An additional issue which we observed is that in many low-end applications,
the key is loaded once to the device and is never changed. In such instances,
it should be possible to provide an encryption solution which can handle a key
which is not stored in memory, preferably in a more efficient manner.

A final issue related to reducing the area requirements of the cipher is the block
size. By decreasing the block size, it is possible to further reduce the memory
complexity of the cipher. On the other hand, reducing the plaintext size to less
than 32 bits has strong implications on the security of the systems using this
cipher. For example, due to the birthday bound, a cipher with block size smaller
than 32 bits is distinguishable from a family of random permutations after 216

blocks.
The life span of a simple RFID tag indeed fits this restriction, but some RFID

tags and several devices in sensor networks may need to encrypt larger amounts
of data (especially if the used protocols require the encryption of several values
in each execution). Thus, we decided to offer 3 block sizes to implementers —
32 bits, 48 bits, and 64 bits.

276 C. De Cannière, O. Dunkelman, and M. Knežević

Our specific design goals are as follows:

– For an n-bit block size, no differential characteristic with probability greater
than 2−n exists for 128 rounds (about half the number of rounds of the
cipher).

– For an n-bit block size, no linear approximation with bias greater than 2−n/2

exists for 128 rounds.
– No related-key key-recovery or slide attack with time complexity smaller

than 280 exists on the entire cipher.
– High enough algebraic degree for the equation describing half the cipher to

thwart any algebraic attack.

We note that the first two conditions ensure that no differential-linear attack (or
a boomerang attack) exist for the entire cipher as well. We also had to rank the
possible design targets as follows:

– Minimize the size of the implementation.
– Keeping the critical path as short as possible.
– Increase the throughput of the implementation (as long as the increase in

the foot print is small).
– Decrease the power consumption of the implementation.

3 General Construction and Building Blocks

Following the design of KeeLoq [17], we decided to adopt a cipher whose structure
resembles a stream cipher. To this extent we have chosen a structure which
resembles trivium [6], or more precisely, its two register variant bivium as the
base for the block cipher. While the internal state of trivium was 288 bits to
overcome the fact that each round, one bit of internal state is revealed, in the
block cipher this extra security measure is unnecessary. Hence, we select the
block size and the internal state of the cipher to be equal.

The structure of the KATAN and the KTANTAN ciphers is very simple — the
plaintext is loaded into two registers (whose lengths depend on the block size).
Each round, several bits are taken from the registers and enter two nonlinear
Boolean functions. The output of the Boolean functions is loaded to the least
significant bits of the registers (after they were shifted). Of course, this is done
in an invertible manner. To ensure sufficient mixing, 254 rounds of the cipher
are executed.

We have devised several mechanisms used to ensure the security of the cipher,
while maintaining a small foot print. The first one is the use of an LFSR instead
of a counter for counting the rounds and to stop the encryption after 254 rounds.
As there are 254 rounds, an 8-bit LFSR with as sparse polynomial feedback can
be used. The LFSR is initialized with some state, and the cipher has to stop
running the moment the LFSR arrives to some predetermined state.

We have implemented the 8-bit LFSR counter, and the result fits a gate
equivalent of 60 gates, while using an 8-bit counter (the standard alternative)

KATAN and KTANTAN 277

took 80 gate equivalents. Moreover, the expected speed of the LFSR (i.e. the
critical path) is shorter than the one for the 8-bit counter.

Another advantage for using LFSR is the fact that when considering one of the
bits taken from it, we expect a sequence which keeps on alternating between 0’s and
1’s in a more irregularmanner than in a counter (of course the change is linear). We
use this feature to enhance the security of our block ciphers as we describe later.

One of the problems that may arise in such a simple construction is related
to self-similarity attacks such as the slide attacks. For example, in KeeLoq [17]
the key is used again and again. This made KeeLoq susceptible to several slide
attacks (see for example [5,13]). A simple solution to the problem is to have the
key loaded into an LFSR with a primitive feedback polynomial (thus, altering the
subkeys used in the cipher). This solution helps the KATAN family to achieve
security against the slide attack.

While the above building block is suitable when the key is loaded into memory,
in the KTANTAN family, it is less favorable (as the key is hardcoded in the
device). Thus, the only means to prevent a slide attack is by generating a simple,
non-repetitive sequence of bits from the key. To do so, we use the “round counter”
LFSR, which produces easily computed bits, that at the same time follow a non-
repetitive sequence.

The third building block which we use prevents the self-similarity attacks and
increases the diffusion of the cipher. The cipher actually has two (very similar
but distinct) round functions. The choice of the round function is made according
to the most significant bit of the round-counting LFSR. This irregular update
also increases the diffusion of the cipher, as the nonlinear update affects both
the differential and the linear properties of the cipher.

Finally, both KATAN and KTANTAN were constructed such that an imple-
mentation of the 64-bit variants can support the 32-bit and the 48-bit variants
at the cost of small extra controlling hardware. Moreover, given the fact that
the only difference between a KATANn cipher and KTANTANn is the way the
key is stored and the subkeys are derived, it is possible to design a very compact
circuit that support all six ciphers.

4 The KATAN Set of Block Ciphers

The KATAN ciphers compose of three variants: KATAN32, KATAN48 and
KATAN64. All the ciphers in the KATAN family share the key schedule which
accepts an 80-bit key and 254 rounds as well as the use of the same nonlinear
functions.

We start by describing KATAN32, and describe the differences for KATAN48
and KATAN64 later. KATAN32, the smallest of this family has a plaintext and
ciphertext size of 32 bits. The plaintext is loaded into two registers L1, and L2

(of respective lengths of 13 and 19 bits) where the least significant bit of the
plaintext is loaded to bit 0 of L2, while the most significant bit of the plaintext
is loaded to bit 12 of L1. Each round, L1 and L2 are shifted to the left (bit i is
shifted to position i + 1), where the new computed bits are loaded in the least

278 C. De Cannière, O. Dunkelman, and M. Knežević

significant bits of L1 and L2. After 254 rounds of the cipher, the contents of
the registers are then exported as the ciphertext (where bit 0 of L2 is the least
significant of the ciphertext).

KATAN32 uses two nonlinear function fa(·) and fb(·) in each round. The
nonlinear function fa and fb are defined as follows:

fa(L1) = L1[x1] ⊕ L1[x2] ⊕ (L1[x3] · L1[x4]) ⊕ (L1[x5] · IR) ⊕ ka

fb(L2) = L2[y1] ⊕ L2[y2] ⊕ (L2[y3] · L2[y4]) ⊕ (L2[y5] · L2[y6]) ⊕ kb

where IR is irregular update rule (i.e., L1[x5] is XORed in the rounds where the
irregular update is used), and ka and kb are the two subkey bits. For round i,
ka is defined to be k2i, whereas kb is k2i+1. The selection of the bits {xi} and
{yj} are defined for each variant independently, and listed in Table 2.

After the computation of the nonlinear functions, the registers L1 and L2 are
shifted, where the MSB falls off (into the corresponding nonlinear function), and
the LSB is loaded with the output of the second nonlinear function, i.e., after the
round the LSB of L1 is the output of fb, and the LSB of L2 is the output of fa.

The key schedule of the KATAN32 cipher (and the other two variants KATAN48
and KATAN64) loads the 80-bit key into an LFSR (the least significant bit of
the key is loaded to position 0 of the LFSR). Each round, positions 0 and 1 of
the LFSR are generated as the round’s subkey k2i and k2i+1, and the LFSR is
clocked twice. The feedback polynomial that was chosen is a primitive polyno-
mial with minimal hamming weight of 5 (there are no primitive polynomials of
degree 80 with only 3 monomials):

x80 + x61 + x50 + x13 + 1.

We note that these locations compose a full difference set, and thus, are less likely
to lead to a guess and determine attacks faster than exhaustive key search.

In other words, let the key be K, then the subkey of round i is ka||kb =
k2·i||k2·i+1 where

ki =
{

Ki for i = 0 . . . 79
ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 Otherwise

The differences between the various KATAN ciphers are:

– The plaintext/ciphertext size,
– The lengths of L1 and L2,
– The position of the bits which enter the nonlinear functions,
– The number of times the nonlinear functions are used in each round.

While the first difference is obvious, we define in Table 2 the lengths of the
registers and the positions of the bits which enter the nonlinear functions used
in the ciphers. The selection of the bits {xi} and {yj} are defined for each variant
independently, and are listed in Table 2.

For KATAN48, in one round of the cipher the functions fa and fb are applied
twice. The first pair of fa and fb is applied, and then after the update of the

KATAN and KTANTAN 279

Table 2. Parameters defined for the KATAN family of ciphers

Cipher |L1| |L2| x1 x2 x3 x4 x5

KATAN32/KTANTAN32 13 19 12 7 8 5 3
KATAN48/KTANTAN48 19 29 18 12 15 7 6
KATAN64/KTANTAN64 25 39 24 15 20 11 9

Cipher y1 y2 y3 y4 y5 y6

KATAN32/KTANTAN32 18 7 12 10 8 3
KATAN48/KTANTAN48 28 19 21 13 15 6
KATAN64/KTANTAN64 38 25 33 21 14 9

L2

←−−−

L1

−−−→

�⊕
�⊕� �∧�

��IR ∧ � �⊕ � � ka

�

�

⊕

�

⊕
�

� ∧� �

�∧�
�

⊕��kb

�

Fig. 1. The Outline of a round of the KATAN/KTANTAN ciphers

registers, they are applied again, using the same subkeys. Of course, an efficient
implementation can implement these two steps in parallel. In KATAN64, each
round applies fa and fb three times (again, with the same key bits).

We outline the structure of KATAN32 (which is similar to the round function
of any of the KATAN variants or the KTANTAN variants) in Figure 1.

Finally, specification-wise, we define the counter which counts the number of
rounds. The round-counter LFSR is initialized to the all 1’s state, and clocked
once using the feedback polynomial x8 + x7 + x5 + x3 + 1. Then, the encryption
process starts, and ends after 254 additional clocks when the LFSR returns to the
all 1’s state. As mentioned earlier, we use the most significant bit of the LFSR
to control the irregular update (i.e., as the IR signal). For sake of completeness,
in Table 3 in the Appendix we give the sequence of irregular rounds.

We note that due to the way the irregular update rule is chosen, there are no
sequences of more than 7 rounds that share the pattern of the regular/irregular
updates, this ensures that any self-similarity attack cannot utilize more than 7
rounds of the same function (even if the attacker chooses keys that suggest the
same subkeys). Thus, it is easy to see that such attacks are expected to fail when
applied to the KATAN family.

We implemented KATAN32 using Synopsys Design Compiler version
Y-2006.06 and the fsc0l d sc tc 0.13μm CMOS library. Our implementation

280 C. De Cannière, O. Dunkelman, and M. Knežević

requires 802 GE, of which 742 are used for the sequential logic, and 60 GE
are used for the combinational logic. The power consumption at 100 KHz, and
throughput of 12.5 Kbps is only 381 nW. This is a gate level power estimation
obtained using Synopsys Design Compiler3.

For KATAN48 the implementation size is 927 GE (of which 842 are for the
sequential logic) and the total power consumption is estimated to 439 nW. For
the 64-bit variant, KATAN64, the total area is 1054 GE (of which 935 are for
the sequential logic) and the power consumption 555 nW.

Here we would like to note that the further area reduction for KATAN48
and KATAN64 is possible by utilizing a clock gating technique. As explained
above, the only difference between KATAN32 on one hand and KATAN48 and
KATAN64 on the other, is the number of nonlinear functions fa and fb applied
with the same subkeys per single round. Therefore, we can clock the key register
and the counter such that they are updated once in every two (three) cycles
for KATAN48 (KATAN64). However, this approach reduces the throughput two
(three) times respectively, and is useful only when the compact implementa-
tion is an ultimate goal. An area of 916 GE with the throughput of 9.4 Kb/s
(at 100 KHz) is obtained for KATAN48 and 1027 GE with the throughput of
8.4 Kb/s (at 100 KHz) for KATAN64.

At the cost of little hardware overhead, a throughput of the KATAN family
of block ciphers can be doubled or even tripled. To increase the speed of the
cipher, we double (triple) the logic for the nonlinear functions fa and fb as well
as the logic for the feedback coefficients of the counter and the key register. The
implementation results are given in Appendix B.

5 The KTANTAN Family

The KTANTAN family is very similar to the KATAN family up to the key
schedule (i.e., the only difference between KATANn and KTANTANn is the
key schedule part). While in the KATAN family, the 80-bit key is loaded into a
register which is then repeatedly clocked, in the KTANTAN family of ciphers,
the key is burnt (i.e., fixed) and the only possible “flexibility” is the choice of
subkey bits. Thus, the design problem in the KTANTAN ciphers is choosing a
sequence of subkeys in a secure, yet an efficient manner.

In order to minimize the hardware size, while maintaining the throughput,
we treat the key as 5 words of 16 bits each. From each 16-bit word we pick the
same bit (using a MUX16to1) according to the four most significant bits of the
round controlling LFSR. Then, out of the five bits we choose one using the four
least significant bits of the round-counting LFSR.

Formally, let K = w4||w3||w2||w1||w0, where the least significant bit of w0 is
the least significant bit of K, and the most significant bit of w4 is the most signif-
icant bit of K. We denote by T the round-counting LFSR (where T7 is the most

3 Although the gate level power estimation gives a rough estimate, it is useful for
comparison with related work reported in the literature.

KATAN and KTANTAN 281

significant bit), then, let ai = MUX16to1(wi, T7T6T5T4), where MUX16to1(x, y)
gives the yth bit of x. Then, the key bits which are used are

ka = T3 · T2 · (a0) ⊕ (T3 ∨ T2) · MUX4to1(a4a3a2a1, T1T0),

kb = T3 · T2 · (a4) ⊕ (T3 ∨ T2) · MUX4to1(a3a2a1a0, T1T0)

(where MUX4to1(x, y) is a MUX with 4 input bits and 1 output bit).
When considering ka or kb, of the 80-bit key, only one bit is used only twice,

15 are used four times, and the remaining 64 bits are used 3 times (but in total
each key bit is used at least 5 times). Moreover, even if an attacker tries to pick
two keys which realize the same subkey sequence for either ka or kb, the maximal
length of such a sequence for either ka of kb is 35 rounds (i.e., necessarily after
35 rounds the sequences differ). We also note that due to the irregular update,
during these 35 rounds, the round function is going to be different in any case.

The last issue concerning the KTANTAN key schedule is finding the most
efficient way to implement it. One possible solution is to have the entire selec-
tion logic in one round. This approach requires 5 parallel MUX16to1 and our
hardware implementations show that the total area consumed by the MUXes is
about 180 GE. A second approach is to use one MUX16to1 and re-use it over 5
clock cycles. At a first glance, this approach may lead to a smaller circuit (while
the implementation is slower). However, due to the cost of the extra control
logic, this approach is not only slower, but leads to a larger circuits.

We implemented KTANTAN32 using the same fsc0l d sc tc 0.13μm CMOS
library. Our implementation requires 462 GE, of which 244 are used for the
sequential logic, and 218 GE are used for the combinational logic. The simulated
power consumption at 100 KHz, and throughput of 12.5 Kbps is only 146 nW.
For the synthesis and the power estimation we have again used the same version
of Synopsys Design Compiler.

For KTANTAN48 the implementation size of 588 GE (of which 344 are used
for the sequential logic) is obtained together with the estimated power consump-
tion of 234 nW. For the 64-bit variant, KTANTAN64, the total area is 688 GE
(of which 444 are for the sequential logic) and the power consumption 292 nW.
By using the clock gating as explained above, the area of 571 GE (684 GE) and
the throughput of 9.4 Kb/s (8.4 Kb/s) for KATAN48 (KATAN64) is achieved.

Similar to KATAN family, we can also double (triple) a throughput for all
the versions of KTANTAN family. To do that, we double (triple) the number of
MUX16to1, MUX4to1, round functions fa and fb, and all the logic used for the
feedback coefficients of the counter. Additionally, a few more gates are necessary
to perform the key schedule efficiently.

6 Security Analysis

Our design philosophy was based on offering a very high level of security. To do
so, we designed the ciphers with a very large security margins. For example, as a
design target we have set an upper bound for the differential probability of any
128-round differential characteristic at 2−n for an n-bit block size.

282 C. De Cannière, O. Dunkelman, and M. Knežević

6.1 Differential and Linear Cryptanalysis

We have analyzed all ciphers under the assumption that the intermediate encryp-
tion values are independent. While this assumption does not necessarily hold, it
simplifies the analysis and is not expected to change the results too much. More-
over, in our analysis we always take a “worst case” approach, i.e., we consider
the best scenario for the attacker, which is most of the times do not happen.
Hence, along with the large security margins, even if the assumption does not
hold locally, it is expected that our bounds are far from being tight.

To simplify the task of identifying high probability differentials, we used
computer-aided search. Our results show that depending on the used rounds, the
best 42-round differential characteristic for KATAN32 has probability of 2−11

(it may even be lower for different set of rounds). Hence, any 126-round differen-
tial characteristic must have probability no more than (2−11)3 = 2−33. Similar
results hold for linear cryptanalysis (the best 42-round linear approximation has
a bias of 2−6, i.e., a bias of 2−16 for 126-round approximation).

For KATAN48, the best 43-round differential characteristic has probability of
at most 2−18. Hence, any 129-round differential characteristic has probability of
at most (2−18)3 = 2−54. As the probability of an active round is at least 2−4 this
actually proves that our design criteria for 128-round differential characteristics
is satisfied. The corresponding linear bias is 2−10 (for 43 rounds) or 2−28 (for
129 rounds).

Finally, repeating the analysis for KATAN64, our computer-aided search found
that the best 37-round differential characteristic has probability 2−20. Hence, any
111-round differential characteristic has probability of at most 2−60, along with
the fact that the best 18-round differential characteristic has probability of at
most 2−5, then the best 129-round differential characteristic has probability of
no more than 2−65. The linear bounds are 2−11 for 37 rounds and 2−31 for 111
rounds.

Hence, we conclude that the KATAN family is secure against differential and
linear attacks. As there is no difference between the KATAN and the KTANTAN
families with respect to their differential and linear behaviors, then the above is
also true for the KTANTAN family.

6.2 Combined Attacks

As shown in the previous section, the probability of any differential characteristic
of 128 rounds can be bounded by 2−n for KATANn. Moreover, even for 64
rounds, there are no “good” characteristics. Hence, when trying to combine
these together, it is unexpected to obtain good combined attacks.

For example, consider a differential-linear approximation. As noted before, the
differential characteristic of 42-round KATAN32 has probability at most 2−11.
The bias of a 42-round KATAN32 is at most 2−6. Hence, the best differential-
linear property for 120 rounds is expected to have bias of at most 2·2−11·(2−6)2 =
2−22 (we assume a worst case assumption that allows the attacker to gain some
free rounds in which the differential is truncated). Of course, an attacker may

KATAN and KTANTAN 283

try to construct the differential-linear approximation using a different division
of rounds. However, as both the probability and bias drop at least exponentially
with the number of rounds, a different division is not expected to lead to better
differential-linear approximations.

The same goes for the (amplified) boomerang attack. The attack (just like the
differential-linear attack) treats the cipher as composed of two sub-ciphers. The
probability of constructing a boomerang quartet is p̂2q̂2, where p̂ =√∑

β Pr 2[α → β] where α is the input difference for the quartet, and β is
the output difference of the characteristic in the first sub-cipher. Again, as
p̂2 ≤ maxβ Pr[α → β] which is bounded at 2−22 for 84-round KATAN32. The
same goes with respect to q̂, and thus, the probability of a boomerang quartet
in 128-round KATAN32 is at most 2−44.

The same rationale can be applied to KATAN48 and KATAN64, obtaining
similar bounds. Specifically, the bounds for differential-linear bias is 2−37 (for
140 rounds) and 2−50 (for 160 rounds), respectively. The bounds for constructing
a boomerang quartet for 128 rounds are 2−54 and 2−65, respectively.

Another combined attack which may be considered is the impossible differen-
tial attack. This attack is based on finding a differential which has probability
zero of as many rounds as possible. The most common way to construct such
a differential is in a miss-in-the-middle manner, which is based on finding two
(truncated) differentials with probability 1 which cannot co-exist. Due to the
quick diffusion, changing even one bit would necessarily affects all bits after at
most 42 rounds (37 for KATAN48 and 38 for KATAN64), and thus, there is no
impossible differential of more than 168 rounds (after 42 rounds, change of any
bit may affect all bits, and thus, after 84 rounds, each differential may have any
output difference).

Hence, we conclude that the KATAN family (as well as the KTANTAN family)
of block ciphers is secure against combined attacks.

6.3 Slide and Related-Key Attacks

As mentioned before, the way KATAN and KTANTAN were designed to foil
self-similarity attacks by using two types of rounds which are interleaved in a
non-repeating manner. First, consider the slide attack, which is based on finding
two messages such that they share most of the encryption process (which are
some rounds apart). Given the fact that there is a difference between the deployed
round functions, this is possible only for a very small number of rounds. Even if
we allow these relations to be probabilistic in nature (i.e., assume that the bit
of the intermediate value is set to 0 thus preventing the change in the function
to change the similarity between the states). For example, when considering
KATAN32, there is no slide property with probability 2−32 starting from the
first round of the cipher. The first round from which such a property can be
constructed is round 19. If an attacker achieves the same intermediate encryption
value after round 19 and round 118, he may find a “slid” pair which maintains
the equality with probability 2−31 until the end of the cipher (i.e., the output of
the second encryption process will be the same as the intermediate encryption

284 C. De Cannière, O. Dunkelman, and M. Knežević

value of the first encryption at round 155). This proves that there are no good
slid properties in the cipher family (we note that this probability is based on the
assumption that the subkeys are the same, which is not the case, unless the key
is the all zeros key). When it comes to KATAN48 or KATAN64, this probability
is even lower (as there are more bits which need to be equal to zero), i.e., 2−62

and 2−93, respectively, rendering slide attacks futile against the KATAN and the
KTANTAN families (these values are actually an upper bound as they assume
that all the subkeys are the same).

Now consider a related-key attack. In the related-key settings, the attacker
searches for two intermediate encryption values as well as keys which develop in
the same manner for as many rounds as possible. As noted before, there are no
“good” relations over different rounds, which means that the two intermediate
encryption values have to be in the same round. However, by changing even
one singly bit of the key causes a difference after at most 80 rounds of similar
encryption process. Hence, no related-key plaintext pairs (or intermediate en-
cryption values) exist for more than 80 rounds (similarity in 80 rounds would
force the key and the intermediate encryption value to be the same). As this is
independent of the actual key schedule algorithm, it is easy to see that both the
KATAN and the KTANTAN families are secure against this attack.

The only attack in this category which remains is related-key differential at-
tack. This is the only attack where there is a difference between the two families
of ciphers according to their key schedule algorithm. We first consider the case
of the KATAN family. The key schedule of the KATAN family expands linearly
the 80-bit key into 508 subkey bits (each is used once in KATAN32, twice in
KATAN48, and thrice in KATAN64). We note that the probability of the differ-
ential is reduced any time a difference enters one of the nonlinear functions (i.e.,
the AND operation). Thus, it is evident that good related-key differentials have
as little active bits as possible. Moreover, we can relate the number of active bits
throughout the encryption process to the issue of active bits in the key schedule.
Each active bit of the subkey (i.e., a subkey bit with a difference) either causes a
difference in the internal state (which in turn incurs probability and activation
of more bits), or is being canceled by previous differences. We note that each ac-
tive subkey bit which is not canceled, necessarily induces probability “penalty”
of 2−2 in KATAN32, 2−4 in KATAN48, and 2−6 in KATAN64. Moreover, due
to the way the cipher works, each active bit can “cancel” at most four other
active subkey bits.4 Hence, if the weight of the expanded subkey difference is
more than 80, then it is assured that the probability of any related-key differ-
ential of KATAN32 is at most 2−32 (this follows the fact that each active bit in
the intermediate encryption value may cancel up to four subkey bit differences
injected, and we shall assume a worst case assumption that the positions align
“correctly). For KATAN48, due to the increased penalty, it is sufficient that
the minimal weight of the expanded subkey difference is more than 60, and for

4 We note that five or six can be canceled, but in this case, the probability penalty of
an active bit is increased by more than the “gain” offered by using this active bit
more times.

KATAN and KTANTAN 285

KATAN64 the minimal weight needs to be at least 54. We were analyzing the
minimal weight using the MAGMA software package, and the current bounds
are between 72 and 84. Hence, we conclude that the KATAN family of block
ciphers is expected to be resistant to related-key differential attacks.

For the KTANTAN family, due to the fixed key, the concept of related-key at-
tacks is of theoretical interest. Still, we can follow a more detailed analysis using
the same ideas as we used for regular differential searches. While the search space
is huge, our current results show that there is no related-key differential charac-
teristic for more than 150 rounds of KTANTAN32 with probability greater than
2−32. Similar results are expected to hold for KTANTAN48 and KTANTAN64.

6.4 Cube Attacks and Algebraic Attacks

Given the low algebraic degree of the combining function, it may look as if
KATAN and KTANTAN are susceptible to algebraic attacks or cube attack [7].
However, when considering the degree of the expressions involving the plaintext,
one can see that after 32 rounds (for KATAN32) the degree of each internal state
bit is at least 2, which means that after 160 rounds, the degree of each internal
state bit can reach 32. For KATAN48, the degree is at least 2 after 24 rounds,
(or about 48 after 144 rounds), and for KATAN64 it is 2 after 22 rounds and
can reach 64 after 132 rounds). Hence, as the degree can reach to the maximal
possible value (and there are some more rounds to spare), it is expected that the
KATAN and KTANTAN families are secure against algebraic attacks.

Another possible attack is the cube attack, which was successful against
reduced-round variants of Trivium (with less initialization rounds than in the
Trivium). We note that in trivium the internal state is clocked four full cycles
(i.e., each bit traverse all the registers exactly four times). In KATAN32, most
bits traverse the registers eight times (where a few does so only seven times), go-
ing through more nonlinear combiners (each Trivium round uses only one AND
operation per updated bit), and thus is expected to be more secure against this
attack than Trivium. The same is also true for KATAN48 (where about half of
the bits traverse the registers 10 times, and the other bits do so 11 times) and
KATAN64 (where most of the bits traverse the registers 12 times, and a few do
that only 11 times).

7 Summary

In this paper we have presented two families of hardware efficient encryption
algorithms. The family of cipher is suitable for low-end devices, and even offer
algorithmic security level of 80 bits in cases where the key is burnt into the device
(of course, the implementation has to be protected as well). As the proposal
have a simple structure and use very basic components, it appears that common
techniques to protect the implementation should be easily adopted.

286 C. De Cannière, O. Dunkelman, and M. Knežević

References

1. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

3. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

4. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

5. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and Slide Attacks on KeeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

6. De Canniére, C., Preneel, B.: Trivium Specifications, eSTREAM submission,
http://www.ecrypt.eu.org/stream/triviump3.html

7. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials, IACR
ePrint report 2008/385, accepted to EUROCRYPT 2009 (2009)

8. Feldhofer, M., Wolfkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. In: IEE Proceedings of Information Security, vol. 152(1), pp. 13–20. IEE
(2005)

9. Good, T., Benaissa, M.: Hardware results for selected stream cipher candidates.
In: Preproceedings of SASC 2007, pp. 191–204 (2007)

10. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and Imple-
mentation of Low-Area and Low-Power AES Encryption Hardware Core. In: Ninth
Euromicro Conference on Digital System Design: Architectures. IEEE Computer
Society, Los Alamitos (2006)

11. Hell, M., Johansson, T., Meier, W.: Grain — A Stream Cipher for Constrained
Environments, eSTREAM submission,
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf

12. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

13. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A Practical
Attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 1–18. Springer, Heidelberg (2008)

14. Langford, S.K., Hellman, M.E.: Differential-Linear Cryptanalysis. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)

15. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.)
WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

16. Mentens, N., Genoe, J., Preneel, B., Verbauwhede, I.: A low-cost implementation
of Trivium. In: Preproceedings of SASC 2008, pp. 197–204 (2008)

17. Microchip Technology Inc. KeeLoqR© Authentication Products,
http://www.microchip.com/keeloq/

18. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

http://www.ecrypt.eu.org/stream/triviump3.html
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://www.microchip.com/keeloq/

KATAN and KTANTAN 287

19. Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Light-Weight DES
Variants Suited for RFID Applications. In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 196–210. Springer, Heidelberg (2007)

20. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implemen-
tations for smart devices – security for 1000 gate equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Hei-
delberg (2008)

A The Irregular Update Sequence

Table 3. The sequence of the irregular updates. 1 means that the irregular update
rule is used in this round, while 0 means that this is not the case.

Rounds 0–9 10–19 20–29 30–39 40–49 50–59
Irregular 1111111000 1101010101 1110110011 0010100100 0100011000 1111000010

Rounds 60–69 70–79 80–89 90–99 100–109 110–119
Irregular 0001010000 0111110011 1111010100 0101010011 0000110011 1011111011

Rounds 120–129 130–139 140–149 150–159 160–169 170–179
Irregular 1010010101 1010011100 1101100010 1110110111 1001011011 0101110010

Rounds 180–189 190–199 200–209 210–219 220–229 230–239
Irregular 0100110100 0111000100 1111010000 1110101100 0001011001 0000001101

Rounds 240–249 250–253
Irregular 1100000001 0010

288 C. De Cannière, O. Dunkelman, and M. Knežević

B Implementation Trade-Offs

Table 4. Area-Throughput Trade-Offs

Cipher Block Key Size Gates per Throughput� Logic
(bits) (bits) (GE) Memory Bit (Kb/s) Process

KATAN32 32 80 802 6.25 12.5 0.13 µm
KATAN32 32 80 846 6.25 25 0.13 µm
KATAN32 32 80 898 6.25 37.5 0.13 µm

KATAN48† 48 80 916 6.25 9.4 0.13 µm
KATAN48 48 80 927 6.25 18.8 0.13 µm
KATAN48 48 80 1002 6.25 37.6 0.13 µm
KATAN48 48 80 1080 6.25 56.4 0.13 µm

KATAN64† 64 80 1027 6.25 8.4 0.13 µm
KATAN64 64 80 1054 6.25 25.1 0.13 µm
KATAN64 64 80 1189 6.25 50.2 0.13 µm
KATAN64 64 80 1269 6.25 75.3 0.13 µm

KTANTAN32 32 80 462 6.25 12.5 0.13 µm
KTANTAN32 32 80 673 6.25 25 0.13 µm
KTANTAN32 32 80 890 6.25 37.5 0.13 µm

KTANTAN48† 48 80 571 6.25 9.4 0.13 µm
KTANTAN48 48 80 588 6.25 18.8 0.13 µm
KTANTAN48 48 80 827 6.25 37.6 0.13 µm
KTANTAN48 48 80 1070 6.25 56.4 0.13 µm
KTANTAN64† 64 80 684 6.25 8.4 0.13 µm
KTANTAN64 64 80 688 6.25 25.1 0.13 µm
KTANTAN64 64 80 927 6.25 50.2 0.13 µm
KTANTAN64 64 80 1168 6.25 75.3 0.13 µm
� — A throughput is estimated for frequency of 100 KHz.
† — Using clock gating.

	KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers
	Introduction
	Motivation and Design Goals
	General Construction and Building Blocks
	The KATAN Set of Block Ciphers
	The KTANTAN Family
	Security Analysis
	Differential and Linear Cryptanalysis
	Combined Attacks
	Slide and Related-Key Attacks
	Cube Attacks and Algebraic Attacks

	Summary
	The Irregular Update Sequence
	Implementation Trade-Offs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

