
Susceptibility of eSTREAM Candidates towards
Side Channel Analysis⋆

Benedikt Gierlichs1, Lejla Batina1, Christophe Clavier2, Thomas Eisenbarth3,
Aline Gouget4, Helena Handschuh5, Timo Kasper3, Kerstin Lemke-Rust6,

Stefan Mangard7, Amir Moradi8⋆⋆, and Elisabeth Oswald9

1 K.U. Leuven, ESAT/SCD-COSIC, Kasteelpark Arenberg 10, B-3001
Leuven-Heverlee, Belgium, firstname.lastname@esat.kuleuven.be

2 Gemalto, Security Labs, Avenue du Jujubier, ZI Athélia IV, 13705 La Ciotat
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3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, 44780 Bochum,
Germany, eisenbarth@crypto.rub.de, tkasper@crypto.rub.de

4 Gemalto, Security Labs, 6 rue de la Verrerie, 92190 Meudon, France,
aline.gouget@gemalto.com

5 Spansion,105 Rue Anatole France, 92684 Levallois-Perret Cedex, France,
helena.handschuh@spansion.com

6 T-Systems GEI GmbH, Rabinstr. 8, 53111 Bonn, Germany
kerstin.lemke@t-systems.com

7 Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany,
stefan.mangard@infineon.com

8 Department of Computer Engineering, Sharif University of Technology, Tehran,
Iran, amir.moradi@crypto.rub.de

9 University Bristol, Department of Computer Science, Bristol, United Kingdom,
elisabeth.oswald@bristol.ac.uk

Abstract. We analyze the relevant candidates in phase 3 of the eSTREAM
project with respect to side channel analysis in a theoretical approach.

Keywords: Side Channel Analysis, eSTREAM

1 Introduction

The eSTREAM project [1] is an open multi-year effort to identify new stream
ciphers that might become suitable for widespread adoption. Stream ciphers are
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evaluated in two categories of applications. Profile 1 includes stream ciphers for
software applications with high throughput requirements and Profile 2 includes
stream ciphers for hardware applications with restricted resources such as limited
storage, gate count, or power consumption. Table 1 summarizes the candidates
in phase 3 of the eSTREAM project.

Table 1. Stream cipher candidates in phase 3 of the eSTREAM project.

Profile 1 (SW) Profile 2 (HW)

CryptMT (CryptMT Version 3) DECIM (DECIM v2, DECIM-128)
Dragon Edon80
HC (HC-128, HC-256) F-FCSR (F-FCSR-H v2, F-FCSR-16)
LEX (LEX-128, LEX-192, LEX-256) Grain (Grain v1, Grain-128)
NLS (NLSv2, encryption only) MICKEY (MICKEY 2.0, MICKEY-128 2.0)
Rabbit Moustique
Salsa20 Pomaranch (Pomaranch Version 3)
SOSEMANUK Trivium

It is worth noting that side channel analysis is an implementation attack, i.e.,
in practice the susceptibility depends on the design of the cipher, the design of
the implementation, and the target platform. However, this work follows a more
general theoretical approach and focuses on the susceptibility of implementation
properties for a given cipher design. The susceptibility towards side channel
analysis is assessed by considering established implementation techniques, side
channel leakage models, and side channel attacks. Previously, similar approaches
were carried out by Biham and Shamir [3] as well as Daemen and Rijmen [5] for
the AES candidates and by Oswald and Preneel for the NESSIE candidates [9].

This paper is organized as follows. Section 2 introduces the framework and
evaluation criteria for assessing the theoretical susceptibility of stream ciphers
towards side channel analysis. In Sections 3 and 4 these evaluation criteria are
applied to all relevant stream ciphers in phase 3 of the eSTREAM project.
Section 5 summarizes our results. For the specifications of the eSTREAM ciphers,
the reader is referred to [1].

2 Evaluation Criteria

A stream cipher typically includes the operations key setup, IV setup and key
stream generation (encryption). Note that the mandatory interface for the ref-
erence implementations specifies four interface functions: ECRYPT init (ini-
tialization), ECRYPT keysetup (key setup), ECRYPT ivsetup (IV setup) and
ECRYPT process bytes (encryption or decryption). Depending on the construc-
tion of the cipher initialization, key setup, and IV setup may comprise a single
function.



2.1 The Adversary

For the subsequent evaluation of eSTREAM candidates we model the adversary
as follows:

– she knows the IV and the keystream, optionally she can choose IVs
– she can reset the stream cipher (i.e., re-invoke IV and/or key setup)
– she aims at key recovery.

2.2 Timing Analysis (TA)

Timing Analysis [7] exploits a dependency between the execution time of an
algorithm and the course of its (secret) internal state. If such dependencies exist,
it is possible to recover the secret by carefully analyzing the algorithm’s execution
time. With respect to Timing Analysis we consider key setup, IV setup and
encryption. We look into the following issues:

– Does the stream cipher include conditional branches depending on the in-
ternal state?

– Does the stream cipher include table look-ups (which might allow cache
timing attacks [2] against software implementations on certain platforms)?

– Can a timing analysis attack be mounted (in key setup, IV setup, and en-
cryption)? If so
• How many key bits (or internal state bits) are compromised? For software

implementations we consider a 32-bit device.
• Which countermeasures can be implemented to counteract timing analy-

sis?
• What are the efficiency costs of countermeasures?

2.3 Power Analysis

Leakage Model The adversary observes a perfect Hamming weight (or Ham-
ming distance) leakage. Algorithmic noise (i.e., noise by parallel operation of
the cipher) should be considered, especially in hardware implementations due
to wide data paths. Non-algorithmic noise (measurement, external and further
intrinsic noise) is neglected.

Simple Power Analysis Simple Power Analysis (SPA) [8] exploits depen-
dencies between the instantaneous power consumption and instructions and/or
(secret) data being processed. The attacker infers information from one or a few
power measurements. In our analysis SPA applies to key setup, IV setup and
encryption. We look into the following issues:

– Does the stream cipher include conditional branches depending on the in-
ternal state?

– Can a SPA attack be mounted (in key setup, IV setup, and encryption)? If
so,



• how many key bits are compromised as result of the attack? For software
implementations we consider a 32-bit device.

• Is the SPA attack considered to be straight-forward or complex?
• Can an efficient masking scheme be applied to prevent SPA?

In order to quantify the information leakage we use the Shannon Entropy as
defined in [4]. The entropy of the Hamming weight of an 8-bit, 16-bit, and 32-bit
random variable is 2.54 bits, 3.05 bits, and 3.55 bits, respectively. For a more
elaborate discussion, see Appendix.

Differential Power Analysis Differential Power Analysis (DPA) [8] is based
on the functional dependency of the power consumption and the data processed.
In particular, it analyzes the differences in the power consumption due to the
processing of different data values. In this work (first-order) DPA applies to IV
setup and encryption. The following questions are considered:

– What are the fundamental operations of the stream cipher?
– Can a Differential Power Analysis attack be mounted (in IV setup and en-

cryption)? If so
• how many key bits are compromised as result of the attack? For software

implementations we consider a 32-bit device.
• How many (different) operations of the cipher are needed to be attacked?
• What is the number of key hypotheses? For software implementations

we consider a 32-bit device.
• Is the DPA attack considered to be straight-forward or complex?
• Can an efficient masking scheme be applied to prevent DPA?

Note that, although we focus on 32-bit devices for software implementations, an
adversary will likely have the choice to apply the divide-and-conquer principle
in order to attack smaller parts of the key. The increased algorithmic noise can
usually be compensated by an increased number of measurements. Basically, one
trades computational complexity for measurements. The same observations hold
for hardware implementations.

2.4 Countermeasures

We provide an intuition on how costly possible power analysis countermeasures
for software candidates are in terms of efficiency based on the following assump-
tions:

– boolean masking is easy,
– masking of small tables (up to 256 bytes) is medium,
– masking of larger tables and protection of algorithms that contain boolean

and arithmetic operations is costly.

For hardware candidates the topic is more difficult. A general approach to protect
a given circuit is the use of secure logic. However, this implies an area increase
by a factor of about three to five and an increase of power dissipation by a factor
of about two to three, depending on the logic style.



2.5 Summary of the evaluation

We summarize our findings about each eSTREAM candidate in a table as follows.
Note that “maybe” means that a vulnerability exists but we are not sure whether
it can be exploited efficiently.

Table 2. Summary of (theoretical) side channel susceptibility for ** cipher name **

Exploitable (cache) timing vulnerability: yes/ no/ maybe
Exploitable conditional branches vulnerability: yes/ no/ maybe
Exploitable HW leakage of data, SPA vulnerability: yes/ no/ maybe
Exploitable DPA vulnerability: yes/ no/ maybe
DPA Attack complexity: low/ medium/ high
Software candidates only:
Cost of countermeasures: low / medium / high

3 Phase 3 candidates profile 1 (SW)

In this section we focus on the profile 1 candidates mentioned in Table 1.

3.1 CryptMT

The stream cipher CryptMT consists of a huge state linear generator (called
the mother generator) and a non-linear filter with memory. In the most recent
version (version 3) of CryptMT, the so-called Simple Fast Mersenne Twister
(SFMT) is used as mother generator. The SFMT has an internal state of 156
128-bit integers and a period that is a multiple of the Mersenne prime 219937−1.
The output of the SFMT is a 128-bit integer that is fed into a non-linear filter
with a memory of 128 bit. The key stream of CryptMT is generated based on
the output of this filter.

The internal state of the SFMT is very large and therefore a so-called booter
is used for initialization. This booter expands the key and the IV to a sequence of
156 128-bit integers that are used to fill the state of the SFMT. However, during
the initialization the integers are not only used for the SFMT. The output of the
booter is also sent to the non-linear filter to already generate a pseudorandom
sequence during initialization. After the internal state of the SFMT has been
filled, the input of the filter is switched from the booter to the SFMT.

The cipher is in particular suited for 32-bit platforms as it uses addition and
multiplication modulo 232. Furthermore, CryptMT also uses permutations, shift
operations as well as bitwise AND, OR, and XOR operations.

There are no conditional jumps in the algorithm and no table-lookups. Fur-
thermore, the permutations and shift operations are fixed and do not depend on
key-related material. Hence, standard timing attacks should not be an issue for
typical implementations.



In case of power analysis attacks, the initialization is the most interesting
point of attack. In this phase, the booter expands the key and the IV to a
sequence of 128-bit integers. This expansion can be exploited in a DPA attack,
if the IV is known. There are intermediate 32-bit values that depend on the IV
and the key. The attacker can in general reveal the entire key by formulating 232

hypotheses for each 32-bit subkey. However, there are also instances where the
attacker can perform DPA attacks with less key hypotheses. For example, at the
very beginning of the initialization of the booter there are subtraction/addition
operations modulo 232 of the key and the IV. Such operations can be attacked
by only predicting the LSB of the key first and then by successively predicting
more and more bits of the key. The fact which parts of the IV are combined with
which parts of the key depends on the key size. Hence, the exact attack strategy
for a DPA attack on CryptMT depends on the key size.

Besides DPA attacks, it is also possible to mount SPA and template attacks.
There are several instances in the algorithm, where the attacker can learn bits
about the key or the internal state. However, as all operations of the cipher are
32-bit operations, these attacks require that the attacker can distinguish the
Hamming weights 0 . . . 32 in the power traces. In the case of template attacks
therefore 33 templates are required.

An attacker who observes the Hamming weight of a 32-bit values that oc-
cur during the operation of a cipher, on average learns 3.55 bit of information
about each value. This general leakage occurs for every operation in the cipher.
In addition to this, shift operations are a potential source of information. If
these shifts are done bitwise, the attacker can learn one bit during each shift.
Shift operations are performed at several instances in the algorithm. Another
source of additional information are logical operations with constants. There are
instances in the cipher, where bitwise AND and OR operations of fixed public
values and secret information is performed. By comparing the Hamming weight
of the output of the operation and the Hamming weight of the secret input, the
attacker can learn some bits of information. There are several instances where
the algorithm leaks information. However, for a concrete statement on how the
leakage can be combined to a powerful SPA or template attack, it would be
necessary to analyze a concrete implementation. Counteracting power analysis
attacks on CrypMT by masking seems expensive because the algorithm uses
boolean as well as arithmetic operations.

Table 3. Summary of (theoretical) side channel susceptibility for CryptMT

Exploitable cache timing vulnerability: no
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes
Exploitable DPA vulnerability: yes
DPA Attack complexity: medium
Cost of Countermeasures: high



3.2 Dragon

We focus here on the 128-bit key version of the stream cipher DRAGON. All
security comments exposed in the sequel are more or less applicable on the 256-
bit key version as well.

The stream cipher DRAGON takes on input a 128-bit secret key k and a
known and controllable 128-bit initialization vector iv.

The stream cipher DRAGON does not contain any conditional branching and
is so immune to classical forms of timing analysis. Nevertheless, the F function
of the algorithm makes use of two 8-bit to 32-bit substitution boxes S1 and
S2 (1 KB each) which make the algorithm possibly vulnerable to some kind of
cache-based timing analysis.

As the cipher does not contain any conditional branching, it is not subject
to Simple Power Analysis at the instruction level.

It is conceivable to apply SPA at the data level if the adversary is able to infer
from the side channel signal the Hamming weight of some intermediate data. As
a simple example, the initialization function (which generates the starting value
of the internal state from both k and iv) begins with the manipulation of all four
32-bit chunks of the 128-bit sensible data (a, b, c, d) = W0 ⊕W6 ⊕W7. Denoting
k = (k0, k1, k2, k3) and iv = (iv0, iv1, iv2, iv3), we have a = d = k0⊕k2⊕iv0⊕iv2

and b = c = k1 ⊕ k3 ⊕ iv1 ⊕ iv3. The observation of the Hamming weights of a
and b leaks 2 · 3.55 bits on k. By invoking the cipher with different initialization
vectors, the adversary can learn these Hamming weight for different values of
a and b. This results in the recovery of 64 bits of the key corresponding to the
precise determination of k0 ⊕ k2 and k1 ⊕ k3. We believe that the observation of
some other intermediate data further in the initialization process will likely help
the adversary to recover the whole key value.

While not impossible, a data masking scheme that could prevent this attack
will probably result in a large increase of memory (due to the need of masking
both S-Boxes) and execution time (due to the mix of arithmetic and boolean
operations).

Differential Power Analysis (DPA) is also possible on this algorithm. As an
example, one of the very first operations in the initialization phase computes
G1(a + f) where a = k0 ⊕ k2 ⊕ iv0 ⊕ iv2 and f is a known constant. The non-
linear function G1 applied to the 32-bit data x = (x0, x1, x2, x3) is defined using
S-Boxes S1 and S2 by G1(x) = S1(x0) ⊕ S1(x1) ⊕ S1(x2) ⊕ S2(x3). For each S-
Box computation, a guess on only 8 bits of a key-related value allows to predict
the output of this S-Box. Making varying the relevant part of the initialization
vector, the adversary is thus able to mount a DPA based upon this prediction. For
each attacked S-Box, 8 key bits are recovered by considering 256 key hypotheses.
In this example the secret value k0 ⊕ k2 is retrieved. Applying DCSA on other
(possibly deeper) parts of the initialization phase will likely allow to reveal the
whole key.



Table 4. Summary of (theoretical) side channel susceptibility for DRAGON

Exploitable cache timing vulnerability: yes
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes
Exploitable DPA vulnerability: yes
DPA Attack complexity: low
Cost of Countermeasures: high

3.3 HC-128 and HC-256

HC-128 and HC-256 respectively use a 128-bit and 256-bit key. For simplicity,
we will describe our results on HC-128, but a straightforward extension of these
findings can be made to HC-256. HC-128 uses two secret tables P and Q of 29

elements each; each element in the tables is a 32-bit value. 6 different update
functions are used within HC-128. f1 and f2 are similar to the message expansion
functions of SHA-256. They compute the eXOR sum of rotated and shifted
versions of a unique variable. g1 and g2 have three variables each and compute
the eXOR sum of rotated versions of their three variables. h1 and h2 compute
the sum of the outputs of two terms of the secret tables P and Q respectively;
one byte of the variable is used as an index to the lower half of the table and
another byte is used as an index to the upper half of the table for each one of
the functions. The key and IV setup phase repeats the secret key twice in the
first 8 state words W0 . . . W7, then repeats the IV twice in the next 8 state words
W8 . . . W15 and then generates the next 1264 state words by applying a recursive
addition of five terms, namely Wi = f2(Wi−2) + Wi−7 + f1(Wi−15) + Wi−16 + i

for i ≥ 16. After this, the secret tables P and Q are formed with the last 1024
such generated words (i.e. the first 256 ones are thrown away, the next 512 words
are allocated to P and the last 512 words are allocated to Q).

Once the setup phase is done, the key stream generation phase takes place by
updating each element of the tables P and Q in turn using a recursive addition
of plain table elements and images of table elements by gi, and by outputting
a 32-bit word which depends on the last updated term of the table and an hi

function of another term of the table. For more precise details, see the reference
submission.

We note that the fi functions use both rotation operations and shift opera-
tions. In an implementation which shifts or rotates the 32-bit operands bit by
bit, those values are revealed bit by bit. This can be precluded by careful hard-
ware and software implementations in which rotations and shifts are done in a
single clock cycle on 32-bit data operands.

We further note that the ciphers use secret S-Boxes in the form of the P

and Q tables. This could indicate that cache timing attacks could be possible on
high-end processors. However this is not the case since there are no secret indices
used for the table look-ups, at least in the setup phase. In other words, if cache
lines get evicted, the attacker learns nothing since the indexes to the tables are
already known, and no exploitable collisions occur in those indexes. Later on, in



the keystream generation phase, the indexes do become secret, but by then the
tables are not known to the attacker anymore, so straightforward cache attacks
with unknown table elements do not seem to lead to promising results.

If we consider SPA, for example using a simple Hamming weight model, we
can exploit the fact that the fi functions use rotations and shifts of the 32-
bit key words. Thus the Hamming weight of every 32-bit key word is revealed
during that computation. This means we have an entropy loss of about 3.55 bits
per 32-bit key element, which means 14 key bits are lost on the overall 128-bit
key (or equivalently 28 key bits are lost for the 256-bit key version in HC-256).
Furthermore, the fi functions use shift operations, which shift out 3 bits of the
key word. Therefore the difference between the total Hamming weight and the
Hamming weight of the remaining 29-bit word reveals the Hamming weight of
the 3 shifted bits. On these three bits the entropy loss is 1.81 bits, and on the
29-bit word, there is a further entropy loss of 3.47 bits. In total, the overall
remaining key size is thus 4 · 29− 4 · 3.47 = 102 key bits plus 4 · 1.19 = 4.76 bits,
or in total 107 key bits.

For DPA attacks, during the key setup phase, one of the most straightforward
ideas is to measure the Hamming weight HW1 of f1(K1) and then to guess the
value of the secret key word K0∗. Next, we let Φ(IV ) = f2(Wi−2) + Wi−7 + i

for i = 16. We solve for an IV such that Φ(IV ) = −K0∗ and we measure the
Hamming weight of Φ(IV ) + K0 + f1(K1). If both measured Hamming weights
are equal our guess for K0∗ was correct with high probability, if not we try the
next value. Overall we need to guess and test 232 key values to recover a set
of possible values for that 32 bit chunk of the key. Of course equal Hamming
weights do not imply equality in the operands, but a few additional queries with
different IVs can rule out the majority of wrong guesses easily. Therefore the
full key can be recovered in close to four times 232 complexity and power curves.
This is of course not very efficient.

A better attack scenario is the following: we choose IVs such that Φ(IV ) = j,
where i = 16 and starting from j = 0, j = 1, j = 2, j = 4 up to j = 231 for
every possible power of two. The first value gives us the Hamming weight of
α = K0 + f1(K1). The next value gives us the Hamming weight of α + 1. If this
weight is incremented by 1, we conclude the last bit of α was zero. If the Hamming
weight stays identical, the last two bits of α were 0x01. If the Hamming weight
decreases by n, we conclude the last n+1 bits of α were equal to 0x1 . . . 1. Once
we have found one, two or n bits of α, we take the next relevant power of two for j

and measure the Hamming weight changes anew. This will reveal the whole value
of α after a maximum of 32 chosen IVs. In order to recover the full secret key,
we need to construct 32 chosen IV’s for every relation of the type Kl + f1(Kl+1)
for l from 0 to 3. For the first two relations, obtained from i = 16 and i = 17
this is straightforward, however, for i = 18 and i = 19, the f2 function is applied
to words W16 and W17 which are functions of K0 + f1(K1) and K1 + f1(K2)
respectively. Therefore we first need to solve the first two relations, and then to
adaptively query for IVs such that we can again isolate the terms K2 + f1(K3)
and K3 + f1(K0). We end up with four equations involving four unknown key



words, which can either be solved by guessing one key word and deriving the
three others, in complexity 232, or by trying to solve the four equations in a
more efficient direct way.

In HC-256, we need the double number of adaptively chosen IVs, namely
8 times 32 IVs instead of 4 times 32 adaptively chosen IVs, but the overall
complexity stays the same since we only need to guess one 32-bit key word to
solve the other seven words.

The key stream generation algorithm seems to be more complex to attack
since by then all the table elements are basically unknown and the equivalent
key size has become huge. So the most promising attacks are the ones mentioned
above. In order to protect against these attacks, we should consider a masking
scheme for the cipher. However, the fact that the cipher heavily uses 32-bit
operands, and that it constantly mixes boolean and arithmetic operations implies
that the masking countermeasures will be relatively inefficient and slow down the
algorithm by a non-negligible factor. It seems particularly difficult to protect the
implementation of the random tables P and Q; however, this may not be required
if no efficient side-channel attacks are found on the keystream generation phase.

Table 5. Summary of (theoretical) side channel susceptibility for HC-128 and HC-256

Exploitable cache timing vulnerability: maybe
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes
Exploitable DPA vulnerability: yes
SPA/DPA Attack complexity: low
Cost of Countermeasures: high

3.4 LEX

The design of LEX is a variant of the AES, i.e., a cipher which follows the
substitution-permutation structures. LEX uses the AES S-Box that is defined
over GF(28). The LEX key schedule is identical to the AES key schedule. Ac-
cording to AES, LEX is defined for 128 bit key length (standard LEX) and for
192 and 256 bit key length (LEX-192 and LEX-256, respectively). IV setup is
done by encrypting an 128-bit IV with a single AES invocation: S = AESK(IV ).
The 128-bit result S and the key K constitute the secret state of the cipher. The
result S is used as plaintext for the first LEX operation in key stream generation.
In keystream operation, LEX outputs four bytes of the evolving internal state
in each AES round and the resulting ciphertext is fed in as the plaintext for the
next LEX operation.

The building blocks of LEX are the substitution box and XOR. LEX is suited
for both 8-bit and 32-bit software implementations. For 32-bit implementations,
the AES operations SubBytes(), ShiftRows() and MixColumns() can be com-
bined in four tables of 28 32-bit entries as done in the reference implementation.



The conditional dependent operation xtime() of the AES standard is avoided this
way. Note that in the reference implementation, bit shifts are applied to isolate
an input byte to the pre-computed tables. Bit shifts are extremely vulnerable to
SPA attacks and compromise the operand bit-by-bit if applied successively. Due
to the use of pre-computed tables in efficient software implementations, LEX is
susceptible to cache based timing attacks.

In key schedule, the Hamming weight of portions of the key can be determined
by a side channel adversary. In 32-bit operations, the entropy loss of the secret
key is about 3.55 bit per 32-bit block. Note that one 32-bit LEX key word need
to be fed into the AES S-Box for the round key derivation. Because of this we
assume that each 8-bit input to the pre-computed table can be intercepted in
portions of 8-bit leading to an entropy loss of about 4 · 2.54 = 10.16 for this
32-bit block. In total, entropy loss sums up to 3 · 3.55 + 10.16 = 20.81. This
leakage can be avoided by applying a standard AES masking scheme for the key
derivation.

In IV setup, the situation is identical to a DPA attack on the AES encryption
provided that several IVs are known. DPA requires 28 key hypotheses per 8-bit
subkey and is assumed to be successful to expose the entire key after applying
DPA to all sixteen subkeys of the first AES round on any unmasked implementa-
tion. The DPA attack is assessed to be simple and straight-forward. Accordingly,
mounting a template attack should succeed with 9 templates on the Hamming
weight at the 8-bit S-Box output. Further, it is assumed that these templates
are recyclable to recover all sixteen subkeys. A standard AES masking scheme
for the IV setup should help to prevent DPA and templates attacks.

In keystream generation, four bytes of each AES round constitute the output
stream. A side channel adversary can collect the corresponding output bytes of
the same location in subsequent AES invocations that belong to the same byte
of a roundkey. The four bytes of the last AES round can be used to mount
a DPA attack after the first AddRoundKey() of the subsequent AES. For all
output positions, a selection function can target the internal state before the last
AddRoundKey() operation using an XOR selection function. This DPA attack
may result in an entropy loss of 32 for each AES roundkey.

Table 6. Summary of (theoretical) side channel susceptibility for LEX.

Exploitable cache timing vulnerability: yes
Exploitable conditional branches vulnerability: maybe (operation xtime())
Exploitable HW leakage of data, SPA vulnerability: yes
Exploitable DPA vulnerability: yes
DPA Attack complexity: low
Cost of Countermeasures: medium



3.5 NLSv2

NLS stands for Non-Linear SOBER and originates from the SOBER family of
stream ciphers. NLSv2 also provides message authentication functionality, how-
ever, the authentication part of NLSv2 is not considered in phase 3 of eSTREAM.
NLSv2 is constructed from a non-linear feedback shift register (NLFSR) and a
non-linear filter (NLF). The internal state σ consists of 544 bits and is stored
in seventeen 32-bit registers r[0], . . . , r[16] of the NLFSR. Basic operations of
NLSv2 are addition modulo 232, XOR of 32-bit words, rotations, and an S-Box
mapping eight bit input to 32 bit output.

NLSv2 does not contain any conditional branches. The use of a table look-up
is a potential vulnerability towards cache timing attacks. Other operations which
may cause a data dependent execution time do not exist. The use of rotations
is known to be susceptible to SPA attacks in the Hamming distance model.

Key setup repeats the following sequence until all key words are loaded: (i)
modular addition of the next key word to register r[15], (ii) clocking of the
NLFSR, and (iii) XOR of the NLF output to register r[4]. Afterwards, step
(ii) and (iii) are repeated seventeen times. Power analysis might recover the
Hamming weight of 32-bit intermediate results as well as the Hamming weight
of the 8-bit input and the 32-bit output of the S-Box that is part of NLF.

IV setup works in exactly the same way as key setup when using IV words
instead of key words and offers the starting point for a DPA attack to recover
the internal state after key set-up. The DPA selection functions are mounted
on the 32-bit operations modular addition and XOR. Note that the number of
key hypotheses is usually much smaller than 232, i.e., the 32-bit intermediate
results are analyzed in parts of one or a few unknown bits. Note further that
DPA on boolean and arithmetic operations usually requires that the known data
part is randomly distributed. The use of a counter for the IV would significantly
increase DPA efforts in a known-IV attack.

In more detail, the first DPA selection function is mounted on the modular
addition of the first IV word and r[15] aiming at recovering r[15] of the inter-
nal state after key set-up. Clocking the NLFSR includes the computation of the
non-linear feedback function which consists of a modular addition of r[0] and
r[15], the S-Box lookup, and the XOR of the S-Box output and r[4]. DPA selec-
tion functions in the non-linear feedback function are mounted on the modular
addition of r[0] and the XOR operation with r[4]. Let denote the contents of the
registers after clocking as r1[0] = r[1], r1[1] = r[2], . . . , r1[15] = r[16], r1[16] = t

where t is the output of the non-linear feedback function. The NLF uses several
registers, namely NLF(σ1) = (r1[0]+r1[16]) ⊕ (r1[1] + r1[13]) ⊕ (r1[6] + Konst).
Except for r1[16], all other registers are unknown. It might be possible that DPA
first recovers r1[0], then the sum of the other involved registers, and finally the
value of r1[4] that is XOR-ed with the NLF output. The NLF is the crucial step
for DPA. If it succeeds a DPA on the overall internal state after key set-up seems
to be possible.



Implementing a masking scheme for NLSv2 is assessed to be expensive be-
cause the algorithm uses boolean operations, arithmetic operations, and an S-
Box table.

Table 7. Summary of (theoretical) side channel susceptibility for NLS

Exploitable cache timing vulnerability: yes
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes
Exploitable DPA vulnerability: yes
DPA Attack complexity: high
Cost of Countermeasures: high

3.6 Rabbit

Rabbit is a synchronous stream cipher that uses a 128-bit key and a 64-bit
initialization vector. The size of the internal state is 513 bits divided between
eight 32-bit state variables x0, . . . , x7, eight 32-bit counters c1, . . . , c7 and one
counter carry bit φ. We call an iteration, the update of the counters done using
a counter system followed by the update of the state variables done using the
core function of Rabbit named Next-State function. The design of Rabbit does
not include table look-ups and there are no conditional branches depending on
the internal state, therefore classical forms of cache-timing attacks and timing
attacks are infeasible.

The key setup algorithm expands the secret key into the 513-bit internal state.
The last internal state of this algorithm is denoted by S = (x0,4, . . . , x7,4, c0,4,

. . . , c7,4, φ7,4). Next, the IV Setup algorithm starts by XORing the 64-bit IV on
all the 256 bits of the counter state, and next it runs four iterations. Then, the
generation of the keystream can start.

During the key setup, the Hamming weight of portions of the key can be
determined by side channel. The key is divided into eight subkeys of 16 bits and
each subkey is loaded into the internal state. The entropy loss is about 3.05 per
16-bit block. Thus, the entropy loss is at least 8 × 3.05 = 24.4. Note that the
subkeys are next manipulated under various forms, e.g. the next operation after
the state initialization is an addition of a 32-bit key with a known constant a0

which also leaks additional information.
The aim of the proposed DPA with chosen IVs is to recover the initial value

of the full state at the beginning of the IV setup algorithm by recovering first
(c0,4, . . . , c7,4) and second (x0,4, . . . , x7,4). Note that this initial state does not
change between two encryptions. The first step of the IV setup consists in modi-
fying the counter state by XORing the 64-bit IV on all the 256 bits of the counter
state. The XOR operation has two inputs of 32 bits ci,4 and ĨVi where ci,4 is

secret and constant, and ĨVi is a subpart of the public initialization value IV

and the attacker can control it. For every i, the attacker will guess bit by bit the



value of ci,4. Note that once the attacker observes sufficient number of the power
consumptions, he does not have to re-observe them for another target bit. Due
to the last operation of the key setup scheme, it is not possible to recover the
key by inversion of the counter system. However, the adversary can compute all
the next values of the counter state. For the second part, the attacker performs
a DPA on the addition used in the function gj,i. The modular addition has two
inputs of 32 bits xi,4 and ci,5 where xi,4 is secret and constant and ci,5 is known
from the attacker. For every i, the attacker will guess, bit by bit from the least
significant bit to the most significant bit, the value of xi,4.

A possible countermeasure to protect Rabbit could be to use a data masking
scheme that will probably result in a large increase execution time due to the
mix of arithmetic and boolean operations.

Table 8. Summary of (theoretical) side channel susceptibility for Rabbit

Exploitable cache timing vulnerability: no
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes
Exploitable DPA vulnerability: yes
DPA Attack complexity: medium
Cost of Countermeasures: high

3.7 Salsa20

The Salsa20 encryption function is an application of the Salsa20 hash function in
counter mode. Salsa20 contains neither an explicit key schedule nor an IV setup.
It is defined for 128 bit and 256 bit key length. The keystream is generated by
hashing a 64-byte sequence that is a concatenation of 16 constant bytes, 2 · 16
or 32 key bytes, an 8 byte nonce, and an 8 byte block counter. The resulting
hash value (keystream) is 64 byte in length and XORed with the corresponding
64 byte plaintext block to encrypt.

The Salsa20 hash function is a long chain of three simple operations: 32-bit
addition, 32-bit XOR, and constant-distance 32-bit rotation. It is suited for both
8-bit and 32-bit software implementations as well as hardware implementations.
Due to the simplicity of the core operations there is no incentive for software
authors to use table lookups. Therefore software implementations can be con-
sidered secure against cache timing attacks. The elementary operations should
execute in data-independent time on usual platforms and should resist timing
attacks.

The Salsa20 hash function makes heavy use of 32-bit rotations in its core
quaterround function. Depending on the architecture and in particular on small,
say 8-bit, devices, a rotation might be performed as a bit-shift with additional
buffer. Bit-shifts are vulnerable to Simple Power Analysis and may compromise
the operand bit-by-bit. During key setup the key material is copied into arrays. In



the given power model each 32-bit part of the key leaks 3.55 bits, so 4·3.55 = 14.2
bits for 128 bit keys and 8 · 3.55 = 28.4 bits for 256 bit keys.

In the following we assume a key length of 128 bit and focus on a 32-bit soft-
ware implementation. Further we assume that the adversary knows the varying
nonces (IVs) and note that control over the nonces very likely eases the attack.
The entire key can be recovered in four portions of 32 bit by a differential side
channel attack. In the first iteration of the round function, the state consists
of 128 constant bits (known), 64 counter bits (known and varying), 64 nonce
bits (known and varying), and 128 constant secret key bits. The first call of
doubleround eventually leads to the first call of columnround, which separately
processes four 128 bit chunks of the state with the quaterround function. Dur-
ing the last execution of the quaterround function, an adversary can recover
64 bits of the secret key. First the computation of z2 is attacked to recover
the value of z1. Now the adversary knows the constant z1 and can compute
the varying z2. Second the computation of z3 is attacked to recover the 32 key
bits stored in y3. Given z1, y3, and the constant y0 the adversary computes
y1 = z1⊕((y0+y3) <<< 7). This attack requires at most two times 232 hypothe-
ses, but can be rendered more practical using the divide-and-conquer principle.
A slightly modified attack against the penultimate execution of the quaterround
function reveals the other half of the key. Note that, since the keystream is as-
sumed to be known, similar attacks can be mounted against the last round of
Salsa20. Overall, the DPA attack is assessed to be non-trivial but completely
feasible. A template attack should succeed with 33 templates on the Hamming
weight of a value transferred to a register (or memory). Software implementa-
tions of Salsa20 can be protected against first-order DPA and basic template
attacks by the masking countermeasure, but the effort is assessed to be high due
to the mix of boolean and arithmetic operations.

Table 9. Summary of (theoretical) side channel susceptibility for Salsa20

Exploitable cache timing vulnerability: no
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes
Exploitable DPA vulnerability: yes
DPA Attack complexity: low
Cost of Countermeasures: high

3.8 SOSEMANUK

SOSEMANUK is a software-oriented stream cipher, which builds upon the block
cipher SERPENT and uses design principles from the stream cipher SNOW.
More precisely, the block cipher SERPENT is used for the key schedule and the
IV injection. The stream cipher SNOW has inspired the design of the LFSR and
the FSM. SOSEMANUK operates as follows. First, the initialization procedure,



which involves the key schedule and the IV injection is computed. Second, the
values from the IV injection are used to initialize the internal state of SOSE-
MANUK, and based on this the actual key stream can be generated.

The key schedule is independent of the IV and produces 25 128-bit subkeys
using the SERPENT key schedule. The IV injection uses the IV as input to
the SERPENT block cipher. In both, the key schedule and the IV injection,
SERPENT is run with 24 rounds only. The IV injection delivers the outputs
of the reduced version of SERPENT of the 12th, 18th, and 24th round as final
output.

In the scenario of DPA attacks, the IV injection is the major step of in-
terest, as DPA attacks make the assumption that the attacker can execute an
algorithm with a fixed key using variable input data. Hence, in order to attack
SOSEMANUK using DPA, we assume that the attacker knows the IVs and can
run the IV injection a number of times (known plaintext attack). In case the
attacker knows the output of the the IV injection also known ciphertext attacks
would be possible. It is however unclear if such an assumption is realistic. It is
possible that DPA attacks can be mounted also during the key stream generation.
However, DPA attacks work best when applied to results of highly non-linear op-
erations, and hence the S-Box operations in SERPENT are probably the easiest
to attack.

To the best of our knowledge, there is no in-depth investigation of the suscep-
tibility of SERPENT against DPA attacks available. Hence, we can only make
general statements (that would apply to any modern block cipher) about DPA
attacks. It is well known that software implementations of block ciphers, un-
less specifically protected, are vulnerable to DPA attacks. In particular, attacks
after a non-linear operation (such as the SERPENT S-Boxes) provide optimal
conditions for a DPA attack to work. Consequently, unless the IV injection of
SOSEMANUK is protected, this part is likely to succumb to standard DPA at-
tacks. Using standard DPA attacks, the 25 SERPENT sub-keys can be revealed
and hence the cipher key can be reconstructed. The complexity of DPA attacks
can be characterised in different ways. For instance, one way of comparing DPA
attacks would be the number of key bits that must be guessed at once. In the
case of attacking intermediate values after the SERPENT S-Boxes, which are
4-bit permutations, this means that an attacker must guess at least 4 key bits
simultaneously.

Under different assumptions, and depending on the actual implementation,
other parts of SOSEMANUK could be vulnerable to SPA and template attacks.

For timing and cache attacks, no general statements can be made either. Too
much depends on the actual implementation. However, SERPENT has been de-
signed such that it is particularly suitable for bit-slice implementations. This
type of implementation has shown to be more resistant to timing and cache at-
tacks than other types of implementations. Hence, unless another timing leakage
is introduced by careless programming, the SERPENT part should be resistant
against different types of timing attacks.



Masking is a standard countermeasure to secure software implementations
against first-order DPA attacks. It can certainly be applied to SERPENT, and to
the key stream generation. Previous work on masking software implementations
of block ciphers has shown that masking increases the code size and the memory
requirements of standard implementations of block ciphers in software. It is
however unclear how expensive it is to mask bit-sliced implementations.

Table 10. Summary of (theoretical) side channel susceptibility for SOSEMANUK

Exploitable cache timing vulnerability: maybe
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes
Exploitable DPA vulnerability: yes
DPA Attack complexity: low
Cost of Countermeasures: high

4 Phase 3 candidates profile 2 (HW)

In this section we focus on the profile 2 candidates mentioned in Table 1.

4.1 DECIMv2

DECIMv2 is a hardware-oriented stream cipher which takes as an input a 80-bit
secret key and a 64-bit IV. The building blocks of DECIMv2 are an LFSR of
length 192 over F2, a 14-variable Boolean filter function f , a decimation process
called ABSG algorithm, and a 32-bit output buffer. In key and IV setup, the
LFSR is initially filled with the 80 key bits Ki, the 64 bits Ki ⊕ IVi, 16 bits
Ki+64 ⊕ IVi ⊕ IVi+16 ⊕ IVi+32 ⊕ IVi+48 and 32 bits IVi ⊕ IVi+32 ⊕ 1. Afterwards
the LFSR is clocked 768 times by using a nonlinear feedback function, i.e., the
feedback bit is lvt ⊕ yt wherein lvt is the linear feedback value and yt denotes
the output of f at time t. In key stream operation, the output of the function f

is switched to the ABSG mechanism and the LFSR is updated with the linear
feedback value lvt. As the rate of the ABSG mechanism is irregular, a buffer of
length 32 is introduced to guarantee a constant throughput of one bit for every
four clock cycles. The output of the keystream generation starts when the buffer
is full.

The number of clock cycles until the buffer is initially filled depends on the
internal state of the cipher and may offer a starting point for a timing attack. A
further timing delay occurs with probability less than 2−89 if the buffer becomes
empty in keystream generation. However, for side channel analysis such a small
probability is not of practical relevance.

In key setup, 80 key bits are loaded into the LFSR. In a standard bit-serialized
implementation, SPA is assumed to succeed in recovering all key bits by observ-
ing the first 80 clock cycles of the key set-up. Thereby, the adversary measures



the Hamming distance of subsequent key bits. Similarly, a DPA attack on the
loading of Ki ⊕ IVi and Ki+64 ⊕ IVi ⊕ IVi+16 ⊕ IVi+32 ⊕ IVi+48 is assumed to
succeed in recovering the key bits in IV setup. These attacks succeed easily if
all flip-flops of the LFSR are reset to a definite state before starting key setup.
Avoiding a reset of the flip-flops, i.e., leaving the LFSR in an unknown state
before key and IV setup may be one approach to prevent these kinds of attacks.

As the IV is assumed to be known, 32 bits of the LFSR are known after
initial filling. An expand-and-prune DPA attack may be feasible on the start of
the update of the LFSR state. The selection function is the feedback bit. The
observed leakage is the change of the Hamming distance in the LFSR. For the
first DPA iteration it requires a 20-bit key hypothesis (nine bit input to filter
function f and eleven bit input to the taps of the LFSR are unknown). On the
other hand, five input bits to the filter function and three bits at the feedback
taps are known. As the number of key hypotheses is beyond the number of known
bits, we assume that DPA withdraws only a certain fraction of key hypotheses in
the first iteration. In the second iteration, the unknown key space is increased by
13 bits, in the third iteration by 11 bits, in the fourth iteration by nine bits. From
the fifth iteration on, the increase of the key space becomes less than the number
of known and predictable bits. Assuming that on average the key space divides
by 28 per DPA iteration, the maximum number of key hypotheses would be
around 229 in the fourth iteration which is by far more expensive than common
DPA attacks on block ciphers. As this attack has not even been simulated yet, it
is hard to say whether these considerations can lead to an overall key exposure
in practice. Choosing of IVs may facilitate an alternative approach that consists
of building a set of equations for the unknown key bits by measuring the change
of the Hamming distance in the LFSR depending on known IV bits.

In key stream generation, a further point of SPA attack is in the ABSG algo-
rithm whereat the adversary may observe whether or not the ABSG algorithm
outputs one bit. Alternatively, templates may be built on this decision process.
The number of clock cycles is directly related to the runs of a bit sequence in
yt, i.e., one observes sequences of the form (b,bi, b) with i ≥ 0, b ∈ {0, 1} and b

is the complement of b. The linear complexity of the stream yt is at most 18528
as f is a quadratic Boolean function. Provided that SPA has recovered 37056
successive bits of yt, the Berlekamp-Massey algorithm determines an LFSR that
generates the key stream. The number of decision processes to be observed is
high. This typically requires the ability to reset the stream cipher with the same
IV multiple times to reduce the error rate.

Table 11. Summary of (theoretical) side channel susceptibility for DECIM.

Exploitable timing vulnerability: maybe
Exploitable conditional branches vulnerability: yes (ABSG algorithm)
Exploitable HW leakage of data, SPA vulnerability: yes (key setup)
Exploitable DPA vulnerability: yes (IV setup)
DPA Attack complexity: high



4.2 F-FCSR

A Feedback with Carry Shift Register (FCSR) can be considered as a cyclic right
shift register where serial full adders are placed between the feedback signal and
selected cells. The position of the full adders depends on the automaton main
parameter. In order to extract one word from the FCSR cells in each clock cycle,
a filter is selected to construct Filtered FCSR. The filter is identified by a fixed
value (with the same length as the FCSR), and the output word bits are obtained
by computing the weight parity of parts of the bitwise AND of the FCSR cells
and the fixed value. Two different sets of parameters are proposed:

– F-FCSR-H that uses 160 cells, keys of length 80, and an IV of a bitsize
between 32 and 80. It generates 1-byte words in each clock cycle.

– F-FCSR-16 that uses 256 cells, keys of length 128, and an IV of bitsize v

with 64 ≤ v ≤ 128. The output of the filter is 2-byte words in each clock
cycle.

The key setup and the IV setup of F-FCSR can comprise a single function.
Next to clearing the carry register of the full adders and filling the FCSR cells
with the key and the zero padded IV, a certain number of rounds (20 times for
F-FCSR-H and 16 times for F-FCSR-16) is iterated to obtain new values for the
FCSR cells. Afterwards the FCSR cells are reloaded with the new values, and
the carry registers are cleared again. The FCSR is then clocked 162 times for
F-FCSR-H and 258 times for F-FCSR-16 ignoring the output.

Whereas 162 and 258 rounds are performed for the IV setup of F-FCSR-H and
F-FCSR-16 profiles respectively, extracting the internal states of the encryption
process by studying power consumption values does not lead to reveal the secret
key bits straightforwardly. Therefore, the initial loops of the IV setup (20 rounds
for F-FCSR-H and 16 rounds for F-FCSR-16) are taken into account to evaluate
the vulnerability of F-FCSR implementations to SPA and DPA attacks.

There are three fundamental operations which can be considered by a side
channel adversary:

1. Updating the FCSR cells (storage the new state of FCSR in its register cells).
2. Updating the carry registers.
3. Computing the weight parity of the FCSR cells selected by the filter.

All of these operations are simultaneously performed in every clock cycle. We
propose a correlation DPA attack in two phases (F-FCSR-H is taken into ac-
count):

In the first phase, Hamming distance of the 80 most significant bits of FCSR
cells is selected as the power consumption model. The 20 least significant bits
of the secret key, K0,K1, . . . ,K19, are revealed using the power traces of the
20-round initial loop of the IV setup and different IVs. One bit of the secret key
(Ki at the ith round) is guessed (and is recovered) in each round of attack.

In the second phase, the attack consists of 60 rounds, and each round uses
the power values of all 20 clock cycles. The Hamming distance of the (80 + i + j)
most significant cells plus the Hamming distance of the (20 − j) least significant



cells of the FCSR constructs the hypothetical power model of the jth clock cycle
at round i. Note that the 20 first feedback bits revealed at the first phase are used
in this phase to compute the Hamming distances. The secret information which
is guessed and is recovered at the ith round is K80−i. In fact, in the both phases
there are two key hypotheses in each round. Note that the attack described above
can be easily adopted for F-FCSR-16 in 16 and 112 rounds at the first and the
second phase respectively. Moreover, the accuracy of the power models can be
improved by consideration of Hamming distance of the carry registers that are
known by the adversary.

To the best of our knowledge there is no masking scheme for this automaton
to counteract DPA attacks. In order to design a masking scheme, a boolean-
masked full adder should be designed, and a strategy to use and update mask
bits must be defined.

Table 12. Summary of (theoretical) side channel susceptibility for F-FCSR

Exploitable timing vulnerability: no
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes (key setup)
Exploitable DPA vulnerability: yes
DPA Attack complexity: medium

4.3 Grainv1

Grainv1 is a hardware-oriented stream cipher which is based on two shift registers
(one LFSR and one NLFSR) and a nonlinear output function. It is a bit oriented
synchronous stream cipher, where both shift registers are 80 bits. The key size is
80 bits and the IV size is 64 bits. The cipher consists of three main building blocks
i.e. an LFSR and NLFSR of lengths 80 and a non-linear function h : F

5
2 → F2.

The contents of two shift registers represents the state of the cipher and from
this state, 5 variables are taken as input to the function h. Before a key stream
is generated, the NLFSR is initially filled with the 80 key bits ki and the first
64 bits of the LFSR are loaded with the IV and the remaining bits of the LFSR
are filled with ones. Then the cipher is clocked 160 times by using the output
function that is actually fed back and XOR-ed with the inputs to the LFSR and
NLFSR without producing a key.

A straightforward hardware implementation [6] consists of 160 Flip-Flops
(80 for each, LFSR and NLFSR), some combinatorial logic for realization of
the three blocks and some additional XORs. The cipher does not include condi-
tional branches and any reasonable implementation should be constant in time
so timing attacks would not be possible.

As already stated above, in key setup, 80 key bits are loaded into the NLFSR.
In a standard bit-serialized implementation, SPA could be possible i.e. an ad-
versary should succeed in recovering all key bits by observing the first 80 clock



cycles of the key set-up. Thereby, similar to DECIM, the adversary measures
the Hamming distance of subsequent key bits. As mentioned above the attacks
could be done easily if all flip-flops of the LFSR are reset before starting key
setup.

A successful DPA attack on Grain was published by Fischer et al. [6]. It
consists of three steps, where in the first two 34 and 16 bits are recovered re-
spectively. The third step is an exhaustive search on the remaining 30 bits. The
authors applied a chosen IV attack, which helped in eliminating the algorithmic
noise. The idea is to attack the key setup and learn key bits iteratively as in each
round the results of the previous ones are used. The first step takes 17 rounds
and the second one only 16 but it is using the bits derived in the first round.

The same attack is applicable to known IV but the influence of noise might be
substantial which could require a large number of samples. Similarly, DPA can
be mounted on the update of the state of the cipher. In that case a hypothesis
could be made on 6 key bits that are output of NLFSR. Another points of
attacks could be before or after the output function. The observed leakage is
based on the Hamming distance model. However, all these attacks would be
less efficient comparing to the published attack. There might be a possibility to
further optimize the known DPA attack by building templates.

Table 13. Summary of (theoretical) side channel susceptibility for Grain

Exploitable timing vulnerability: no
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes
Exploitable DPA vulnerability: yes
DPA Attack complexity: medium

4.4 MICKEY 2.0

MICKEY 2.0 (which stands for Mutual Irregular Clocking KEYstream genera-
tor) is a hardware-oriented stream cipher which is aimed at resource-constrained
platforms. It has two versions, MICKEY 2.0 uses an 80-bit secret key and
MICKEY-128 2.0 is using a 128-bit key. We focus here on the version with an
80-bit key but the same analysis is applicable to the other one as well. It takes
two input parameters: an 80-bit secret key and an IV, which can be between 0
and 80 bits is length, but it is not possible to use two IVs of different lengths
with the same key. The building blocks of MICKEY 2.0 are two registers R and
S, each of which is 100 stages long (each stage contains 1 bit). The register R
is envisioned as “the linear register”, and S as “the non-linear” one. There exist
also a version with a 128-bit key but the structure is similar, so we discuss the
shorter key version here.

The clocking of R is done in two ways, depending on the control bit of R.
When the bit is 0 the clocking of R is a standard LFSR clocking operation with



a primitive polynomial of degree 100. When the bit is 1, each bit in the register
is shifted to the right as well as XOR-ed into the current state.

The clocking of S is done by use of given four sequences of 100 bits each.
Two of the sequences are used to derive an intermediate state and the other two
are then multiplied with the feedback bit, one when the control bit of S is 0 and
the other one otherwise. The generator is clocked on depending on both of the
registers R and S.

The registers are initialized with all zeros. After that IV and key are loaded.
Keystream bits are generated by XOR-ing the registers R and S.

The clocking of the overall generator includes some conditional branching
that is based on one bit (so called MIXING). Therefore, there is a possibility for
timing and SPA attacks. In key setup, 80 key bits are loaded into the LFSR. In a
standard bit-serialized implementation, SPA is assumed to succeed in recovering
all key bits by observing the first 80 clock cycles of the key set-up. This type
of implementation is a common way to obtain a compact solution. In this case
the adversary measures the Hamming distance of subsequent key bits. These
attacks succeed easily because all flip-flops of the LFSR are reset with zeros
before starting key setup.

Assuming known IV and the mixing bit, and the the following observation
holds. One bit information from IV is used to clock the registers depending on
the mixing bit and the bit of IV. The same holds for loading key bits. Both
operations are done by use of operation CLOCKKG. Therefore, it is possible to
perform a DPA attacks that is targeting one bit at a time.

However, it seems to be quite easy to complicate a DPAT attack. The reason
is in a possibility to parallelize a hardware implementation of the cipher, which
can be considered as a countermeasure.

Table 14. Summary of (theoretical) side channel susceptibility for MICKEY 2.0

Exploitable timing vulnerability: yes
Exploitable conditional branches vulnerability: yes
Exploitable HW leakage of data, SPA vulnerability: yes (key setup)
Exploitable DPA vulnerability: yes
DPA Attack complexity: medium

4.5 Moustique

The cipher Moustique is a self-synchronizing stream cipher using a key size of
96 bits and an IV size of 0 to 104 bits. The cipher consists of a so-called Con-
ditional Complementing Shift Register (CCSR), followed by 7 pipelined stages.
Since it is a self-synchronizing cipher, the key as well as one bit of ciphertext per
round are fed into the CCSR during en- and decryption. During IV setup, the
IV is fed into the CCSR instead of the ciphertext, to initialize the cipher state.



Output is suppressed during IV setup. One bit of key stream per clock cycle is
produced during encryption phase.

The whole state of Moustique comprises 408 registers. Moustique uses three
different bit updating functions with four bit inputs and a single bit output,
making use of NAND and XOR gates. Due to the pipelined design and the
efficient bit updating functions, the critical path delay is kept as low as 2 XOR
gates. All registers are clocked each cycle. No timing analysis is possible, since
no conditional branches depending on the internal states are used.

During key setup, the key is simply loaded into the registers. The loading
can be done parallel or bit- or word-serial. Alternatively the key can be stored
in some permanent registers, since it is not altered after being loaded once.
Depending on the key loading method, a SPA attack might be possible, but this
is no specific property of the cipher.

The IV is bitwise loaded into the CCSR during IV setup. At this time the
key is fully loaded and the cipher is fully operational. The output is suppressed
until the key is fully loaded.

An attack during the IV setup does not lead to an advantage compared to
an attack during en- or decryption, because the attacker knows the input to the
CCSR at all times, since it is the ciphertext. Furthermore, there is no obvious
advantage by choosing certain IVs for an attack. Hence an attack during IV
setup is the same as during encryption/decryption time.

The cipher has two properties that are very relevant for side channel analysis.
The first one is the 408 register state, which is updated each round. Most of these
state registers are unknown to an attacker and must be considered as noise. This
will prevent SPA in all cases, except if the registers are all set to zero just after
key setup. In this case, the key would leak its hamming weight during the first
clock cycle of the IV setup. Yet, one could simply not initialize the registers to
prevent this leakage. Hence we consider a SPA impossible. On the other hand,
the cipher uses the full key in each round and never alters the key. Since the key
is never altered, one can gather a huge amount of measurement data to recover
the key, both during IV setup and encryption phase. The single bit input to the
CCSR, q0, is, as stated earlier, known to the attacker at all times.

A promising approach for performing a DPA is a divide and conquer attack
beginning at the lowest key bit. For the CCSR bit updating functions, we have
a known input (q0, the feedback input for each clock cycle). The attacker can
choose a number n of key bits k0 to kn−1 he wants to predict and, together
with the known input of the last n rounds predict n registers of the CCSR. A
correlation attack can now be used to determine the correct key bits. The whole
attack is repeated to recover the subsequent key bits k(m−1)·n to km·n−1, until
the whole key is recovered. During the mth iteration, the attacker is able to
predict m · n bits of the CCSR. Yet only a small portion of the registers of the
cipher can be predicted by the attacker, especially for recovering the first few
bits of the key. This leads to a high number of needed measurements to reduce
the noise of the unpredicted registers.



Table 15. Summary of (theoretical) side channel susceptibility for Moustique

Exploitable timing vulnerability: no
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes (key setup)
Exploitable DPA vulnerability: yes
DPA Attack complexity: medium

4.6 Trivium

The design of Trivium is kept simple to allow for an efficient implementation in
hardware. Three shift registers forming a 288-bit internal state (s1, s2, . . . , s288)
are interconnected in a cyclic manner, so that the output of the last one, s288,
contributes to the input of the first one, s1. In addition to a linear feedback
into its own input by means of XOR gates, each shift register influences the
following one in a non-linear fashion. This nonlinearity originates from ANDing
the output of two adjacent flip-flops and feeding it via an XOR into the input
of the successive shift register. 15 bits of the internal state are used to update
three other bits of the state in each clock cycle. The key stream is produced by
means of a three-input XOR gate that is connected to intermediate values from
between the shift registers.

Prior to the initialization phase of the cipher, the shift registers are preloaded
as follows. The first shift register, consisting of 93 flip-flops s1 to s93, is filled
with the 80-bit key (K1,K2, . . . ,K80) appended with thirteen zeros. The next
shift register, holding 84 bits s94 to s177, is similarly filled with the 80-bit IV
in ascending order and four zeros. The third shift register is composed of 111
flip-flops s178 to s288 and contains only zeros except for the last three bits which
are set to one. For the IV and key setup, the cipher is executed for 4 ·288 = 1152
clock cycles with no output. Afterwards, the output is activated for generating
the key stream.

Trivium does not need any conditional branches depending on the internal
state, nor does it employ S-Boxes or look-up tables. Therefore it is generally not
vulnerable to timing attacks.

For describing the power consumption of this hardware-oriented cipher a
discrete Hamming distance model is appropriate. Typically, it is assumed that
each of the flip-flops of the shift registers behaves in the same way and toggling
of its value produces a significantly higher power consumption than if it remains
unchanged. The power consumed by the XOR and AND gates can usually be
neglected.

In case of a bit-serial loading of the key and the IV into the shift registers, a
straightforward SPA is very likely to be successful in recovering all key bits by
taking into account at least 80 clock cycles, depending on the implementation.
This standard SPA could be improved using templates in case of a very strong
adversary that may pre-profile the cipher with known keys.

Moreover, a DPA can be carried out based on the input of the second shift
register, s94, that is influenced by key bits from the beginning of the initialization



phase. Being connected to the output of an XOR that combines known bits with
bits of the secret key, the content of this flip-flop after the ith clock cycle is

s94(i + 1) = s66(i) ⊕ s91(i) · s92(i) ⊕ s93(i) ⊕ s171(i).

Initially, all of the above values are known except for s66 that is equal to the 66th
bit of the key, K66. For a generalized description of the attack, we will rewrite
the equation with new variables, because si is not defined for negative values.
Hence, for every clock cycle 1 ≤ i ≤ 93, the adversary obtains one equation of
the form

qi = r67−i ⊕ r92−i · r93−i ⊕ r94−i,

where qi is known due to the initialization as stated above and the rj are derived
from the following:

rj = 0 ; j > 80
rj = Kj ; 1 ≤ j ≤ 80
rj = s243(i) ⊕ s286(i) · s287(i) ⊕ s288(i) ⊕ K69+j ; j ≤ 0

From this approach, the adversary obtains an overdetermined system of 93 equa-
tions. Solving it will allow for recovering the full 80-bit secret key. Note that the
cipher has to be executed 93 times, unless the attacker wants to brute force some
values.

The signal-to-noise ratio can be decreased, if we assume a strong adversary
that is allowed to select specific values for the IVs aiming at a minimized algo-
rithmic noise of the cipher. This results in less traces being needed for obtaining
the secret key [6].

As there is no obvious way to recover the internal state of the cipher after
the initialization phase when the key is spread amongst the 288 bits of internal
state, applying any kind of side channel attack at a later stage is not promising.

A straightforward hardware implementation of Trivium, as analyzed above,
generates one bit of key stream per clock cycle. Trivium is designed such that
no value of its internal state is re-used after its modification for at least 64 clock
cycles. Hence, the cipher can be parallelized so that 64 iterations are carried out
in one clock cycle and a 64-bit word is output. The increased algorithmic noise
of such an implementation will make power analysis more difficult, i.e., more
traces will be needed for recovering the secret key.

Table 16. Summary of (theoretical) side channel susceptibility for Trivium

Exploitable timing vulnerability: no
Exploitable conditional branches vulnerability: no
Exploitable HW leakage of data, SPA vulnerability: yes (key setup)
Exploitable DPA vulnerability: yes
DPA Attack complexity: medium



5 Conclusions

In this section we summarize and assess the observations made in the previous
sections in order to provide an overview of the phase 3 candidates with respect
to their vulnerability to side channel attacks. Note, however, that the analysis
of each cipher is done on an abstract level and is in particular not based on a
concrete implementation. Anyway, our evaluation points out potential vulnera-
bilities and can be useful at the time of implementation. Further, we provide a
first intuition about the cost of protecting an implementation.

Table 17 summarizes the analysis results for the software candidates. It seems
that the criterion “exploitable (cache) timing vulnerability” is best suited to
categorize the candidates. CryptMT, Rabbit, and Salsa20 appear to be immune
to timing attacks, whereas Dragon, LEX, HC, NLS, and SOSEMANUK should
be considered vulnerable due to the lookup tables.

Table 17. Summary of (theoretical) side channel susceptibility, profile 1 candidates

Cipher Exploitable Exploitable Exploitable Exploitable DPA attack Masking
(cache) timing conditional HW leakage DPA complexity effort
vulnerability branches of data vulnerability

CryptMT: no no yes yes medium high
Dragon: yes no yes yes low high
HC: maybe no yes yes low high
LEX: yes maybe yes yes low medium
NLS: yes no yes yes high high
Rabbit: no no yes yes medium high
Salsa20: no no yes yes low high
SOSEMANUK: maybe no yes yes low high

It is worth mentioning that LEX, because it is based on the AES, is the only
candidate for which masking solutions exist. Another remark is, that for at least
some of the software candidates, the use of a counter as the IV can significantly
increase the number of measurements required for DPA attacks.

Table 18 summarizes the analysis results for the hardware candidates. Again,
the ciphers are assessed to behave quite similar which makes a ranking difficult.
However, it is worth noting that Decim and Mickey 2.0 are the only candidates
with a potential timing issue and a vulnerability due to conditional branches.

Table 18. Summary of (theoretical) side channel susceptibility, profile 2 candidates

Cipher Exploitable Exploitable Exploitable Exploitable DPA attack
timing conditional HW leakage DPA complexity
vulnerability branches of data vulnerability

Decim: maybe yes yes yes high
F-FCSR: no no yes yes medium
Grain: no no yes yes medium
MICKEY: yes yes yes yes medium
Moustique: no no yes yes medium
Trivium: no no yes yes medium
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Appendix

Let X be a random variable on a discrete space X = {0, 1, . . . , 255} with prob-
ability distribution PX =

{
1

256 , . . . , 1
256

}
, hence uniformly distributed. The en-

tropy of X is

H(X) = −
∑

x∈X

PX [X = x] log2 PX [X = x] = 8 [bits]. (1)

The Hamming Weight function, denoted by HW(·), maps a bit string x to
the number of bits in the string x = x1x2 · · ·x8 which are set to ‘1’ and obviously
the resulting Hamming weight of a byte value is HW(x) =

∑8
i=1 xi which implies

HW(x) ∈ {0, ..., 8}.
We let HW(X) be the random variable denoting the Hamming weight of the

values x of X. If x is an 8-bit string, HW(X) takes values in W = {0, 1, . . . , 8}
with probability distribution

PHW(X) =
{

1
256 , 8

256 , 28
256 , 56

256 , 70
256 , 56

256 , 28
256 , 8

256 , 1
256

}
(2)



which can be found by evaluating the binomial coefficients
(

8
w

)
for w ∈ W. The

entropy of HW(X) is

H(HW(X)) = −
∑

w∈W

PHW(X)[HW(X) = w] log2 PHW(X)[HW(X) = w]

= 2.5442 [bits]. (3)

Similar computation can be performed for 16 and 32-bit variables.


