Scaling ECC Hardware to a Minimum

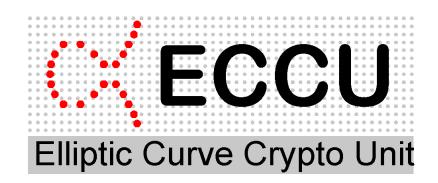
Workshop CRASH 2005

CRyptographic Advances in Secure Hardware

September 6th-7th 2005, Leuven (Belgium).

Johannes.Wolkerstorfer@iaik.tugraz.at

Institute for Applied Information Processing and Communications (IAIK) — <u>VLSI Group</u>

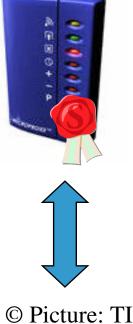

Faculty of Computer Science Graz University of Technology

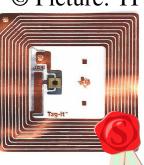
Outline

- Motivation
- Short introduction to ECC
- Implementation options of ECC (hardware)
- Optimization goals
- Design methodology
- ECC processor suitable for RFID

VLSI

Conclusions and future directions


Motivation


- Small ECC hardware: What for?
 - Application
 - Authentication of small devices
 - RFID tags: Privacy, anti forgery
 - Security of sensor network nodes
 - Secure wireless communication
 - Goals

VLSI

- Low power
- Low die size
- Implementation security
- Alternatives
 - Symmetric crypto: Key distribution issue
 - Other algorithms: RSA, XTR, NTRU

Elliptic-Curve Cryptography

- Protocol
 - Challenge-response authentication
- Algorithm

VLSI

- ECDSA: elliptic-curve digital signature algorithm
- Computation
 - Scalar multiplication
 - Repeated Doubling and addition of curve points
 - Finite-field operations (160-bit ... 256-bit)

IAIK

ECDSA e = SHA-1(Message)

 $s = k^{-1} \cdot (e + d \cdot r)$ $2 \cdot P_1 = 2 \cdot (x_1, y_1, z_1) = (x_3, y_3, z_3) = P_3$ $x_3 = (3x_1^2 + az_1^4)^2 - 8x_1y_1^2$ $y_3 = (3x_1^2 + az_1^4)(4x_1y_1^2 - x_3) - 8y_1^4$ $z_3 = 2y_1z_1$

 $\mathbf{r} = \mathbf{R}_{\mathbf{v}} \mod \mathbf{n}$

k = random(1, n-1) R = k*(P_x,P_y) = (R_x,R_y)

Message

C C

Elliptic-Curve Cryptography Implementation Options

- Many options to implement ECC
 - Elliptic curves

VLSI

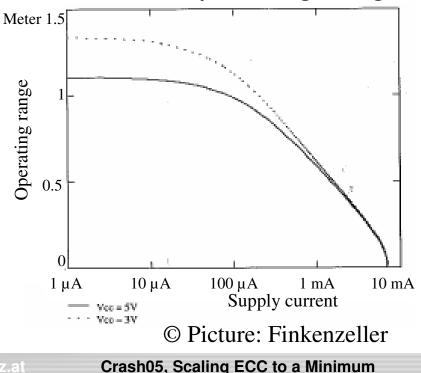
- Elliptic curves, hyper-elliptic curves
- Scalar multiplication
 - Many algorithms: double-and-add, Montgomery method, NAF, window, comb, ...
- Point operations: addition and doubling
 - Many point representations: affine, projective, mixed
- Finite-field arithmetic
 - Prime fields GF(p): modular integer arithmetic
 - Different representations: Montgomery, redundant, signed, .
 - Simplifications: generalized Mersenne primes
 - Binary fields GF(2^m): modular polynomial arithmetic
 - Different bases: polynomial, normal, optimal normal, ...
 - Simplifications: trinomials, pentanomials
 - Other fields: optimal extension fields OEF

Designing ECC hardware is not straight-forward!

> 30

TUG

IAIK


Requirements of Small Devices (Passively Powered Tags)

- Area
 - Determines cost
 - Maximum size depends on added value
 - Microcontroller too large
- Power

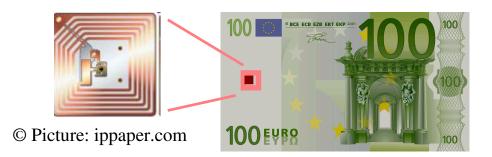
VLSI

- More stringent than area
- Power more important than energy
- Low clock frequency

- Power ctd.
 - Excessive peak power shortens operating range

TUG

IAIK

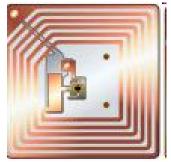

Requirements of Small Devices (Passively Powered Tags)

- Performance
 - Low clock frequency = low throughput
- Bandwidth

VLSI

- Kilobits / second
- Many short messages more costly
 - than a few long messages
- Half duplex; Reader talks first

- Security
 - Robustness against side-channels attacks



Optimization Goals ECC for Passive Tags

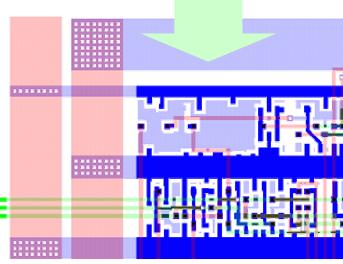
- ECC for 13.56 MHz RFID tags
 - Area
 - Less than 1 mm²
 - Power
 - Passively powered
 - I < 10 μA @1.5 V
 - To guarantee 1 m operating range
 - Performance
 - 300 µs

VLSI

- Security:
 - ECC > 160-bit
 - GF(2¹⁹¹)
 - GF(p₁₉₂)
- Manageable control

© Picture: ippaper.com

Design Methodology


- Top-down design methodology
 - Design space exploration
 - Evaluation of design options
 - Optimization for target application
 - Focus on
 - High-level models
 - Early estimates
- Parameterizable VHDL
- Target technology

VLSI

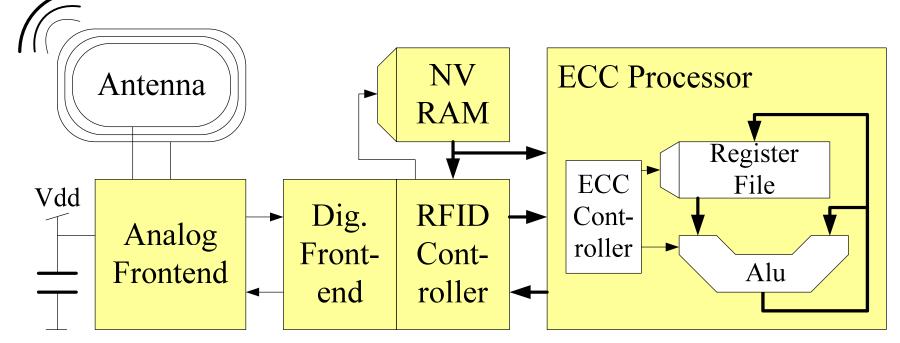
- Standard-cell circuit
- Mixed-signal technology
 - 0.35 μm 180 nm CMOS

VLSI Group, Johannes.Wolkerstorfer@iaik.tugraz.at

NV-RAM available

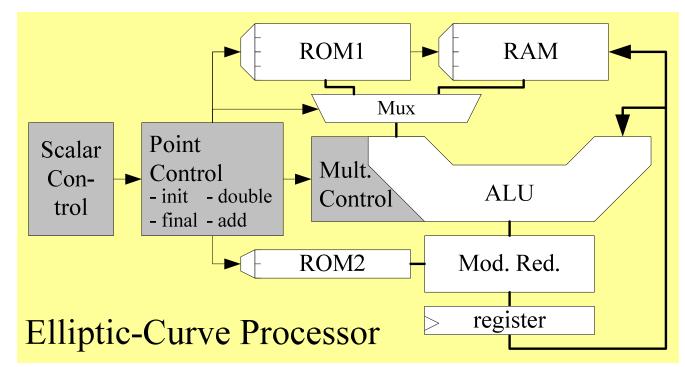
ECC Hardware Scaling ECC to a Minimum

- Which functionality?
 - Scalability?
 - Different curves?
 - Different fields
 - Dual field?
 - DPA resistance
 - ECIES-dec only!
- Tricks applicable?
 - Pre-computation?
 - Early computation!
- What ECC hardware?
 - Instruction set extension
 - MAC unit
 - Finite-field coprocessor
 - EC processor


VLSI

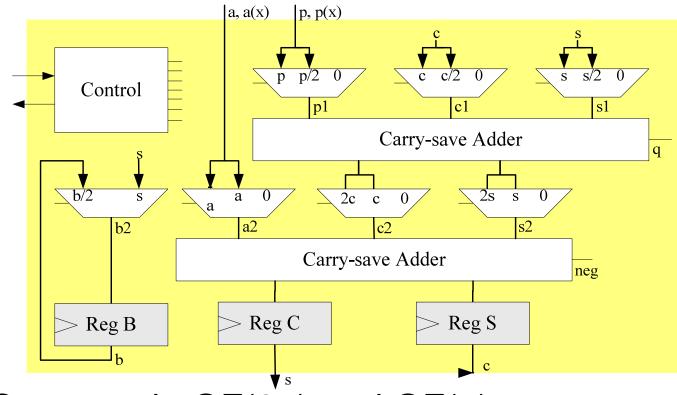
- What in hardware?
 - Multiplier!
 - Full precision!
 - Bit serial!
 - Adder / Subtractor!
 - Squarer?
 - Inversion unit?
 - Modular reduction!
 - Fixed modulus or
 - Montgomery mult.
 - Memory
 - Register file
 - RAM
 - Programmable control?

Explore your needs early!


Architecture ECC-Enabled RFID Tag

- Conventional tag architecture
 - Plus ECC processor

VLSI


Architecture ECC Processor: ECCU

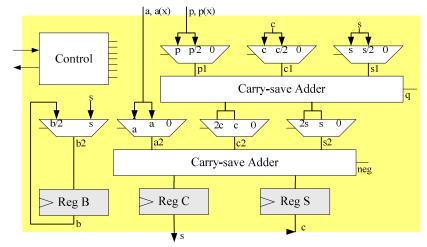
- Full-precision architecture
- Supports different finite fields

VLSI

Architecture Dual-Field Arithmetic Unit

- Operates in GF(2^m) and GF(p)
- Redundant representation of GF(p)

VLSI


Results: Arithmetic unit

- Operations supported by arithmetic unit
- Many HW resources reused

VLSI

	Name	<i>Function</i> (s,c)=	Name	<i>Function</i> (s,c)=
-	Clear	(0, 0)		
	Hold	(s', c')→(s'', 0)	Load	(a, 0)
	Add	(s+a, c)	Sub	(s-a, c)
	Shftl	(2s, 2c)	Shftr	((s+p·q)/2, c/2)
	Mul _o	(a·b ₀ , 0)	Mul _i	((s+p·q)/2+a·b _i +, c/2)

- Dual-field capability at almost no overhead
- Uses Montgomery multiplication

Results

Cycle Count

VLSI

Area (0.35 µm CMOS)

IAIK

Field	Mul	Inv	EC	
р ₁₉₂	197	11k2	677k	
р ₂₂₄	229	14k4	905k	
р ₂₅₆	261	17k7	1M1	
2 ¹⁹¹	197	6k2	426k	
2 ²³³	241	7k5	635k	
2 ²⁸³	289	8k8	920k	

Size [bit]	Area [mm²]	Gates [GE]
192	1.31 0.45+0.66+0.2	23k
224	1.51 0.54+0.77+0.2	27k
256	1.71 0.62+0.89+0.2	31k

ALU + RAM + Control

Results On Actual CMOS Processes

Size, performance, and power

CMOS	ECC Processor (196-bit)					
l _{gate} [nm]	Area [mm²]	Power [µW/MHz]	f _{max} [MHz]	EC [kP/s]		
350	1.31	500	68.5	101.1		
180	0.35	170	225	332.1		
90	0.09	55	600	885.6		

- Most efficient ECC processor (area)
 - Reported in literature so far!

Results Does ECCU fit RFID?

- Area on 0.35 µm CMOS
 - No too large: 1.31 mm²
- Area on 180 nm CMOS
 - YES 0.35 mm² is realistic
- Power

VLSI

- YES! Constraints can be met by
 - Lowering clock frequency (e.g. 175 kHz @180 nm)
- Performance (@ 180 nm)
 - Poor on RFIDs: > 1 second (@ 175 kHz)
 - But: 330 ops / second (@ f_{max} = 225 MHz)

Conclusions

- Thorough analysis
 - Many choices for ECC
 - Tailored hardware!
- Achievements
 - Novel arithmetic unit
 - Dual-field operation: GF(p) and GF(2^m)
 - Area (and power consumption)
 - Suitable for RFID implementation
- Outlook
 - Hardwired control
 - More efficient register file

Future directions ECC Hardware

- Challenges to solve
 - Problems of ECC
 - Too many standards
 - Restriction to prime fields useful?
 - Unclear situation with patents
 - Hashes
 - Bulky HW implementation
 - Protocols
 - Authentication protocols
 - Without hashes
 - Standards